結晶学・表面構造入門<br>Crystallography and Surface Structure : An Introduction for Surface Scientists and Nanoscientists (2nd ed. 2016. XII, 432 S. 38 Tabellen. 24 cm)

個数:
電子版価格
¥19,762
  • 電子版あり

結晶学・表面構造入門
Crystallography and Surface Structure : An Introduction for Surface Scientists and Nanoscientists (2nd ed. 2016. XII, 432 S. 38 Tabellen. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783527339709

Full Description

A valuable learning tool as well as a reference, this book provides students and researchers in surface science and nanoscience with the theoretical crystallographic foundations, which are necessary to understand local structure and symmetry of bulk crystals, including ideal and real single crystal surfaces. The author deals with the subject at an introductory level, providing numerous graphic examples to illustrate the mathematical formalism. The book brings together and logically connects many seemingly disparate structural issues and notations used frequently by surface scientists and nanoscientists. Numerous exercises of varying difficulty, ranging from simple questions to small research projects, are included to stimulate discussions about the different subjects.

From the contents:
Bulk Crystals, Three-Dimensional Lattices
- Crystal Layers, Two-Dimensional Lattices, Symmetry
- Ideal Single Crystal Surfaces
- Real Crystal Surfaces
- Adsorbate layers
- Interference Lattices
- Chiral Surfaces
- Experimental Analysis of Real Crystal Surfaces
- Nanoparticles and Crystallites
- Quasicrystals
- Nanotubes

Contents

Preface to the Second Edition IX

Preface to the First Edition XI

1 Introduction 1

2 Bulk Crystals: Three-Dimensional Lattices 7

2.1 Basic Definition 7

2.2 Representation of Bulk Crystals 11

2.2.1 Alternative Descriptions Conserving the Lattice Representation 12

2.2.2 Alternative Descriptions Affecting the Lattice Representation 14

2.2.2.1 Cubic, Hexagonal, and Trigonal Lattices 16

2.2.2.2 Superlattices and Repeated Slabs 25

2.2.2.3 Linear Transformations of Lattice Vectors 29

2.2.3 Centered Lattices 31

2.3 Periodicity Cells of Lattices 35

2.4 Lattice Symmetry 38

2.5 Reciprocal Lattice 49

2.6 Neighbor Shells 52

2.7 Nanoparticles and Crystallites 63

2.8 Incommensurate Crystals and Quasicrystals 71

2.8.1 Modulated Structures 71

2.8.2 Incommensurate Composite Crystals 73

2.8.3 Quasicrystals 76

2.9 Exercises 82

3 Crystal Layers: Two-Dimensional Lattices 91

3.1 Basic Definition, Miller Indices 91

3.2 Netplane-Adapted Lattice Vectors 96

3.3 Symmetrically Appropriate Lattice Vectors: Minkowski

Reduction 98

3.4 Miller Indices for Cubic and Trigonal Lattices 100

3.5 Alternative Definition of Miller Indices and Miller-Bravais

Indices 106

3.6 Symmetry Properties of Netplanes 109

3.6.1 Centered Netplanes 110

3.6.2 Inversion 111

3.6.3 Rotation 114

3.6.4 Mirror Operation 119

3.6.5 Glide Reflection 131

3.6.6 Symmetry Groups 139

3.7 Crystal Systems and Bravais Lattices in Two Dimensions 144

3.8 Crystallographic Classification of Netplanes and Monolayers 149

3.8.1 Oblique Netplanes 151

3.8.2 Primitive Rectangular Netplanes 151

3.8.3 Centered Rectangular Netplanes 155

3.8.4 Square Netplanes 157

3.8.5 Hexagonal Netplanes 158

3.8.6 Classification Overview 163

3.9 Exercises 164

4 Ideal Single Crystal Surfaces 169

4.1 Basic Definition, Termination 169

4.2 Morphology of Surfaces, Stepped and Kinked Surfaces 175

4.3 Miller Index Decomposition 178

4.4 Chiral and Achiral Surfaces 192

4.5 Exercises 204

5 Real Crystal Surfaces 209

5.1 Surface Relaxation 209

5.2 Surface Reconstruction 210

5.3 Growth Processes 222

5.4 Faceting 226

5.5 Exercises 231

6 Adsorbate Layers 235

6.1 Definition and Classification 235

6.2 Adsorbate Sites 241

6.3 Wood Notation of Surface Structure 251

6.4 High-Order Commensurate (HOC) Overlayers 258

6.5 Interference Lattices 263

6.5.1 Basic Formalism 264

6.5.2 Interference and Wood Notation 272

6.5.3 Anisotropic Scaling, Stretching, and Shifting 279

6.6 Symmetry and Domain Formation 283

6.7 Adsorption at Surfaces and Chirality 293

6.8 Exercises 299

7 Experimental Analysis of Real Crystal Surfaces 305

7.1 Experimental Methods 305

7.2 Surface Structure Compilations 306

7.3 Database Formats for Surface and Nanostructures 311

7.4 Exercises 313

8 Nanotubes 315

8.1 Basic Definition 315

8.2 Nanotubes and Symmetry 319

8.3 Complex Nanotubes 323

8.4 Exercises 326

Appendix A: Sketches of High-Symmetry Adsorbate Sites 329

A.1 Face-Centered Cubic (fcc) Surface Sites 330

A.2 Body-Centered Cubic (bcc) Surface Sites 338

A.3 Hexagonal Close-Packed (hcp) Surface Sites 342

A.4 Diamond Surface Sites 346

A.5 Zincblende Surface Sites 349

Appendix B: Parameter Tables of Crystals 351

Appendix C: Mathematics of the Wood Notation 355

C.1 Basic Formalism and Examples 355

C.2 Wood-Representability 361

Appendix D: Mathematics of the Minkowski Reduction 367

Appendix E: Details of Number Theory 371

E.1 Basic Definitions and Functions 371

E.2 Euclid's Algorithm 376

E.3 Linear Diophantine Equations 377

E.4 Quadratic Diophantine Equations 380

E.5 Number Theory and 2 x 2 Matrices 386

Appendix F: Details of Vector Calculus and Linear Algebra 391

Appendix G: Details of Fourier Theory 395

Appendix H: List of Surface Web Sites 399

Appendix I: List of Surface Structures 401

Glossary and Abbreviations 403

References 417

Index 425

最近チェックした商品