生物化学工学:技術者、化学者、生物学者のための教科書(第2版)<br>Biochemical Engineering : A Textbook for Engineers, Chemists and Biologists (2nd, rev. and enl. ed. 2015. XXII, 304 p. w. 200 figs. and 20 tabs. 24)

個数:
電子版価格
¥12,876
  • 電子版あり

生物化学工学:技術者、化学者、生物学者のための教科書(第2版)
Biochemical Engineering : A Textbook for Engineers, Chemists and Biologists (2nd, rev. and enl. ed. 2015. XXII, 304 p. w. 200 figs. and 20 tabs. 24)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783527338047

Full Description

Completely revised, updated, and enlarged, this second edition now contains a subchapter on biorecognition assays, plus a chapter on bioprocess control added by the new co-author Jun-ichi Horiuchi, who is one of the leading experts in the field.
The central theme of the textbook remains the application of chemical engineering principles to biological processes in general, demonstrating how a chemical engineer would address and solve problems. To create a logical and clear structure, the book is divided into three parts. The first deals with the basic concepts and principles of chemical engineering and can be read by those students with no prior knowledge of chemical engineering. The second part focuses on process aspects, such as heat and mass transfer, bioreactors, and separation methods. Finally, the third section describes practical aspects, including medical device production, downstream operations, and fermenter engineering. More than 40 exemplary solved exercises facilitate understanding of the complex engineering background, while self-study is supported by the inclusion of over 80 exercises at the end of each chapter, which are supplemented by the corresponding solutions.
An excellent, comprehensive introduction to the principles of biochemical engineering.

Contents

Preface to the Second Edition xiii

Preface to the First Edition xv

About the companion website xvii

Nomenclature xix

Part I Basic Concepts and Principles 1

1 Introduction 3

1.1 Background and Scope 3

1.2 Dimensions and Units 4

1.3 Intensive and Extensive Properties 6

1.4 Equilibria and Rates 6

1.5 Batch Versus Continuous Operation 8

1.6 Material Balance 8

1.7 Energy Balance 9

References 11

Further Reading 12

2 Elements of Physical Transfer Processes 13

2.1 Introduction 13

2.2 Heat Conduction and Molecular Diffusion 14

2.3 Fluid Flow and Momentum Transfer 15

2.4 Laminar Versus Turbulent Flow 18

2.5 Transfer Phenomena in Turbulent Flow 21

2.6 Film Coefficients of Heat and Mass Transfer 23

Further Reading 26

3 Chemical and Biochemical Kinetics 27

3.1 Introduction 27

3.2 Fundamental Reaction Kinetics 27

3.2.1 Rates of Chemical Reaction 27

3.2.1.1 Elementary Reaction and Equilibrium 28

3.2.1.2 Temperature Dependence of Reaction Rate Constant k 29

3.2.1.3 Rate Equations for First- and Second-Order Reactions 30

3.2.2 Rates of Enzyme Reactions 34

3.2.2.1 Kinetics of Enzyme Reaction 35

3.2.2.2 Evaluation of Kinetic Parameters in Enzyme Reactions 37

3.2.2.3 Inhibition and Regulation of Enzyme Reactions 39

References 45

Further Reading 45

4 Cell Kinetics 47

4.1 Introduction 47

4.2 Cell Growth 47

4.3 Growth Phases in Batch Culture 49

4.4 Factors Affecting Rates of Cell Growth 52

4.5 Cell Growth in Batch Fermentors and Continuous Stirred-Tank Fermentors (CSTF) 53

4.5.1 Batch Fermentor 53

4.5.2 Continuous Stirred-Tank Fermentor 54

Reference 56

Further Reading 56

Part II Unit Operations and Apparatus for Biosystems 57

5 Heat Transfer 59

5.1 Introduction 59

5.2 Overall Coefficients U and Film Coefficients h 59

5.3 Mean Temperature Difference 62

5.4 Estimation of Film Coefficients h 64

5.4.1 Forced Flow of Fluids through Tubes (Conduits) 65

5.4.2 Forced Flow of Fluids across a Tube Bank 67

5.4.3 Liquids in Jacketed or Coiled Vessels 67

5.4.4 Condensing Vapors and Boiling Liquids 68

5.5 Estimation of Overall Coefficients U 68

References 72

Further Reading 72

6 Mass Transfer 73

6.1 Introduction 73

6.2 Overall Coefficients K and Film Coefficients k of Mass Transfer 73

6.3 Types of Mass Transfer Equipment 77

6.3.1 Packed Column 78

6.3.2 Plate Column 79

6.3.3 Spray Column 79

6.3.4 Bubble Column 79

6.3.5 Packed- (Fixed-) Bed Column 80

6.3.6 Other Separation Methods 80

6.4 Models for Mass Transfer at the Interface 80

6.4.1 Stagnant Film Model 80

6.4.2 Penetration Model 81

6.4.3 Surface Renewal Model 81

6.5 Liquid Phase Mass Transfer with Chemical Reactions 82

6.6 Correlations for Film Coefficients of Mass Transfer 84

6.6.1 Single-Phase Mass Transfer Inside or Outside Tubes 84

6.6.2 Single-Phase Mass Transfer in Packed Beds 85

6.6.3 J-Factor 86

6.7 Performance of Packed Column 87

6.7.1 Limiting Gas and Liquid Velocities 87

6.7.2 Definitions of Volumetric Coefficients and HTUs 88

6.7.3 Mass Transfer Rates and Effective Interfacial Areas 91

References 95

Further Reading 95

7 Bioreactors 97

7.1 Introduction 97

7.2 Some Fundamental Concepts 98

7.2.1 Batch and Continuous Reactors 98

7.2.2 Effects of Mixing on Reactor Performance 99

7.2.2.1 Uniformly Mixed Batch Reactor 99

7.2.2.2 Continuous Stirred-Tank Reactor (CSTR) 99

7.2.2.3 Plug Flow Reactor (PFR) 100

7.2.2.4 Comparison of Fractional Conversions by CSTR and PFR 101

7.2.3 Effects of Mass Transfer Around and within Catalyst or Enzymatic Particles on the Apparent Reaction Rates 102

7.2.3.1 Liquid Film Resistance Controlling 102

7.2.3.2 Effects of Diffusion within Catalyst Particles 103

7.2.3.3 Effects of Diffusion within Immobilized Enzyme Particles 105

7.3 Bubbling Gas-Liquid Reactors 106

7.3.1 Gas Holdup 106

7.3.2 Interfacial Area 107

7.3.3 Mass Transfer Coefficients 108

7.3.3.1 Definitions 108

7.3.3.2 Measurements of kLa 109

7.4 Mechanically Stirred Tanks 111

7.4.1 General 111

7.4.2 Power Requirements of Stirred Tanks 113

7.4.2.1 Ungassed Liquids 113

7.4.2.2 Gas-Sparged Liquids 114

7.4.3 kLa in Gas-Sparged Stirred Tanks 116

7.4.4 Liquid Mixing in Stirred Tanks 118

7.4.5 Suspending of Solid Particles in Liquid in Stirred Tanks 119

7.5 Gas Dispersion in Stirred Tanks 120

7.6 Bubble Columns 120

7.6.1 General 120

7.6.2 Performance of Bubble Columns 121

7.6.2.1 Gas Holdup 121

7.6.2.2 kLa 122

7.6.2.3 Bubble Size 122

7.6.2.4 Interfacial Area a 122

7.6.2.5 kL123

7.6.2.6 Other Correlations for kLa 123

7.6.2.7 kLa and Gas Holdup for Suspensions and Emulsions 124

7.7 Airlift Reactors 125

7.7.1 IL Airlifts 125

7.7.2 EL Airlifts 126

7.8 Packed-Bed Reactors 127

7.9 Microreactors 127

References 131

Further Reading 132

8 Membrane Processes 133

8.1 Introduction 133

8.2 Dialysis 134

8.3 Ultrafiltration 136

8.4 Microfiltration 138

8.5 Reverse Osmosis 139

8.6 Membrane Modules 141

8.6.1 Flat Membrane 141

8.6.2 Spiral Membrane 142

8.6.3 Tubular Membrane 142

8.6.4 Hollow-Fiber Membrane 142

References 143

Further Reading 143

9 Cell-Liquid Separation and Cell Disruption 145

9.1 Introduction 145

9.2 Conventional Filtration 145

9.3 Microfiltration 147

9.4 Centrifugation 148

9.5 Cell Disruption 151

References 153

10 Sterilization 155

10.1 Introduction 155

10.2 Kinetics of Thermal Death of Cells 155

10.3 Batch Heat Sterilization of Culture Media 156

10.4 Continuous Heat Sterilization of Culture Media 158

10.5 Sterilizing Filtration 161

References 164

11 Adsorption and Chromatography 165

11.1 Introduction 165

11.2 Equilibria in Adsorption 165

11.2.1 Linear Equilibrium 165

11.2.2 Adsorption Isotherms of Langmuir Type and Freundlich Type 166

11.3 Rates of Adsorption into Adsorbent Particles 167

11.4 Single- and Multistage Operations for Adsorption 168

11.5 Adsorption in Fixed Beds 170

11.5.1 Fixed-Bed Operation 170

11.5.2 Estimation of the Break Point 171

11.6 Separation by Chromatography 174

11.6.1 Chromatography for Bioseparation 174

11.6.2 General Theories on Chromatography 176

11.6.2.1 Equilibrium Model 176

11.6.2.2 Stage Model 177

11.6.2.3 Rate Model 177

11.6.3 Resolution Between Two Elution Curves 178

11.6.4 Gel Chromatography 179

11.6.5 Affinity Chromatography 181

11.7 Biorecognition Assay 183

11.7.1 Antigen Recognition by an Antibody 183

11.7.2 Enzyme-Linked Immunosorbent Assay (ELISA) 183

References 187

Further Reading 187

Part III Practical Aspects in Bioengineering 189

12 Fermentor Engineering 191

12.1 Introduction 191

12.2 Stirrer Power Requirements for Non-Newtonian Liquids 193

12.3 Heat Transfer in Fermentors 195

12.4 Gas-Liquid Mass Transfer in Fermentors 197

12.4.1 Special Factors Affecting kLa 198

12.4.1.1 Effects of Electrolytes 198

12.4.1.2 Enhancement Factor 198

12.4.1.3 Presence of Cells 199

12.4.1.4 Effects of Antifoam Agents and Surfactants 199

12.4.1.5 kLa in Emulsions 199

12.4.1.6 kLa in Non-Newtonian Liquids 201

12.4.2 Desorption of Carbon Dioxide 202

12.5 Criteria for Scaling-Up Fermentors 204

12.6 Modes of Fermentor Operation 206

12.6.1 Batch Operation 207

12.6.2 Fed-Batch Operation 207

12.6.3 Continuous Operation 209

12.6.4 Operation of Enzyme Reactors 211

12.7 Fermentors for Animal Cell Culture 213

References 214

Further Reading 215

13 Instrumentation and Control of Bioprocesses 217

13.1 Introduction 217

13.2 Instrumentation of Bioprocesses 218

13.2.1 Process Variables and Sensors in Bioprocess Operations 218

13.2.1.1 Physical Variables 220

13.2.1.2 Chemical Variables 221

13.2.1.3 Biochemical Variables 222

13.3 Control of Bioprocesses 223

13.3.1 Schematic View of Instrumentation and Control of Bioprocesses 223

13.3.2 Principles of Control Systems Used for Bioprocesses 224

13.3.2.1 Closed-Loop System with Feedback 224

13.3.2.2 Algorithms for Manipulation of Control Variables 225

13.3.3 Examples of Bioprocess Control 229

13.3.3.1 pH and Temperature Control 229

13.3.3.2 DO Control 230

13.3.3.3 Respiratory Quotient 230

13.3.3.4 pH Stat 231

13.3.3.5 DO Stat 231

13.4 Advanced Control of Bioprocesses 231

13.4.1 Optimization and Control of Bioprocesses 232

13.4.2 Application of Artificial Intelligence (AI) Technology to Bioprocess Control 232

13.4.2.1 Fuzzy Control 232

13.4.2.2 Artificial Neural Network 233

13.4.2.3 Expert System 233

References 234

Further Reading 234

14 Downstream Operations in Bioprocesses 235

14.1 Introduction 235

14.2 Separation of Microorganisms by Filtration and Microfiltration 238

14.2.1 Dead-End Filtration 238

14.2.2 Cross Flow Filtration 240

14.3 Separation by Chromatography 242

14.3.1 Factors Affecting the Performance of Chromatography Columns 242

14.3.1.1 Velocity of Mobile Phase and Diffusivities of Solutes 242

14.3.1.2 Radius of Packed Particles 243

14.3.1.3 Sample Volume Injected 243

14.3.1.4 Column Diameter 244

14.3.2 Scale-Up of Chromatography Columns 245

14.4 Separation in Fixed-Beds 246

14.5 Sanitation in Downstream Processes 247

References 248

Further Reading 249

15 Medical Devices 251

15.1 Introduction 251

15.2 Blood and Its Circulation 251

15.2.1 Blood and Its Components 251

15.2.2 Blood Circulation 253

15.3 Oxygenation of Blood 254

15.3.1 Use of Blood Oxygenators 254

15.3.2 Oxygen in Blood 255

15.3.3 Carbon Dioxide in Blood 256

15.3.4 Types of Blood Oxygenators 258

15.3.5 Oxygen Transfer Rates in Blood Oxygenators 259

15.3.5.1 Laminar Blood Flow 259

15.3.5.2 Turbulent Blood Flow 260

15.3.6 Carbon Dioxide Transfer Rates in Blood Oxygenators 265

15.4 Artificial Kidney 266

15.4.1 Human Kidney Functions 266

15.4.2 Artificial Kidneys 268

15.4.2.1 Hemodialyzer 268

15.4.2.2 Hemofiltration 270

15.4.2.3 Peritoneal Dialysis 270

15.4.3 Mass Transfer in Hemodialyzers (cf. 8.2) 271

15.5 Bioartificial Liver 275

15.5.1 Human Liver 275

15.5.2 Bioartificial Liver Devices 276

References 278

Appendix A: Conversion Factors for Units 279

Appendix B: Solutions to the Problems 281

Index 295

最近チェックした商品