Künstliche neuronale Netze : Die Welt der generativen KI verstehen (2025. 132 S. Komplett in Farbe. 240 mm)

個数:

Künstliche neuronale Netze : Die Welt der generativen KI verstehen (2025. 132 S. Komplett in Farbe. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783446484023

Description


(Text)
Dieses Lehrbuch bietet eine verständliche Einführung in die Welt der neuronalen Netze, die für ein breites Publikum zugänglich ist. Es erklärt grundlegende Algorithmen und Verfahren, die neuronale Netze antreiben, ohne tiefere mathematische Vorkenntnisse oder Programmiererfahrung vorauszusetzen.Die Leser:innen lernen, wie einfache neuronale Netzwerke aufgebaut, trainiert und getestet werden. Darauf aufbauend werden fortgeschrittene Themen wie Autoencoder, autoregressive Modelle, Faltungsnetzwerke und Diffusionsmodelle erläutert. Zahlreiche praktische Beispiele und leicht nachvollziehbare Erklärungen machen das Werk zu einem praxisnahen Lehrbuch für alle, die sich in dieses zukunftsweisende Thema einarbeiten möchten.Online finden Sie Zusatzmaterial in Form von interaktiven Anwendungen sowie Codebeispielen.
(Review)
"'Künstliche neuronale Netze" ist ein anspruchsvolles, fundiertes Lehrbuch, das technikaffinen Lesern den Einstieg in die KI-Welt auf Hochschulniveau ermöglicht." Daniel Richey, it-administrator, August 2025 "Dieses Lehrbuch bietet eine verständliche Einführung in die Welt der neuronalen Netze, die für ein breites Publikum zugänglich ist. Es erklärt grundlegende Algorithmen und Verfahren, die neuronale Netze antreiben, ohne tiefere mathematische Vorkenntnisse oder Programmiererfahrung vorauszusetzen." it management, Juli 2025
(Extract)
- Neuronale Netze- Neuronale Netze testen- Neuronale Netze trainieren- Autoencoder- Autoregressive Modelle- Diffusionsmodelle- Faltungsnetzwerke- Bestärkendes Lernen
(Author portrait)
Dr. Daniel Scholz ist in der Weiterbildung KI & Data Science bei einem großen deutschen Automobilhersteller tätig und darüber hinaus aktiv im Bereich der schulischen Lehre und Weiterbildung.

最近チェックした商品