Covariant Schrödinger Semigroups on Riemannian Manifolds (Operator Theory: Advances and Applications)

個数:

Covariant Schrödinger Semigroups on Riemannian Manifolds (Operator Theory: Advances and Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 239 p.
  • 言語 ENG
  • 商品コード 9783319689029
  • DDC分類 516.373

Full Description

This monograph discusses covariant Schrödinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schrödinger operators has mainly focused on scalar Schrödinger operators on Euclidean spaces so far. In particular, the book studies operators that act on sections of vector bundles. In addition, these operators are allowed to have unbounded potential terms, possibly with strong local singularities. 

The results presented here provide the first systematic study of such operators that is sufficiently general to simultaneously treat the natural operators from quantum mechanics, such as magnetic Schrödinger operators with singular electric potentials, and those from geometry, such as squares of Dirac operators that have smooth but endomorphism-valued and possibly unbounded potentials.

The book is largely self-contained, making it accessible for graduate and postgraduate students alike. Since it also includes unpublished findings and new proofs of recently published results, it will also be interesting for researchers from geometric analysis, stochastic analysis, spectral theory, and mathematical physics..

Contents

Sobolev spaces on vector bundles.- Smooth heat kernels on vector bundles.- Basis differential operators on Riemannian manifolds.- Some specific results for the minimal heat kernel.- Wiener measure and Brownian motion on Riemannian manifolds.- Contractive Dynkin potentials and Kato potentials.- Foundations of covariant Schrödinger semigroups.- Compactness of resolvents for covariant Schrödinger operators.- L^p properties of covariant Schrödinger semigroups.- Continuity properties of covariant Schrödinger semigroups.- Integral kernels for covariant Schrödinger semigroup.- Essential self-adjointness of covariant Schrödinger semigroups.- Form cores.- Applications.

最近チェックした商品