材料モデリング・ハンドブック(第2版・全6巻)手法の部:理論とモデリング(全3巻)<br>Handbook of Materials Modeling + Digital Download : Methods: Theory and Modeling (2ND)

個数:

材料モデリング・ハンドブック(第2版・全6巻)手法の部:理論とモデリング(全3巻)
Handbook of Materials Modeling + Digital Download : Methods: Theory and Modeling (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783319446783
  • DDC分類 530

Full Description


The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community.Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Contents

Materials Modeling MethodsIntroduction Modeling Solids and Its Impact on Science and Technology The Long and Winding Road: Predicting Materials Properties Through Theory and Computation Big Data-Driven Materials Science and Its FAIR Data Infrastructure TDDFT and Quantum-Classical Dynamics: A Universal Tool Describing the Dynamics of Matter Ab Initio Electronic Structure Calculations by Auxiliary-Field Quantum Monte Carlo Electrical Polarization and Orbital Magnetization: The Position Operator Tamed Critical Phenomena in Glasses Electronic Structure of Materials by Ab Initio Methods: Overview Recent Developments in Density Functional Approximations Charge Transfer in Molecular Materials van der Waals Interactions in Material Modelling Pump-Probe Photoelectron Spectra Modeling Excited States of Confined Systems Many-Body Calculations of Plasmon and Phonon Satellites in Angle-Resolved Photoelectron Spectra Using the Cumulant Expansion Approach Non-equilibrium Green's Functions for Coupled Fermion-Boson Systems Non-equilibrium Dynamical Mean-Field Theory Correlations and Effective Interactions from First Principles Using Quantum Monte Carlo Diagrammatic Monte Carlo and GW Approximation for Jellium and Hydrogen Chain Coupled Cluster and Quantum Chemistry Schemes for Solids Optimal Control Theory for Electronic Structure Methods Atomistic Simulations: An Introduction Extending the Scale with Real-Space Methods for the Electronic Structure Problem MP2- and RPA-Based Ab Initio Molecular Dynamics and Monte Carlo Sampling Accelerated Molecular Dynamics for Ab Initio Electronic Simulations Metadynamics: A Unified Framework for Accelerating Rare Events and Sampling Thermodynamics and Kinetics Novel Enhanced Sampling Strategies for Transitions Between Ordered and Disordered Structures Variationally Enhanced Sampling Water: Many-Body Potential from First Principles (From the Gas to the Liquid Phase) Neural Network Potentials in Materials Modeling Computational Methods for Long-Timescale Atomistic Simulations Exploring Potential Energy Surfaces with Saddle Point Searches Off-Lattice Kinetic Monte Carlo Methods Accelerated Molecular Dynamics Methods in a Massively Parallel World Mathematical Foundations of Accelerated Molecular Dynamics Methods Temporal Acceleration in Coupled Continuum-Atomistic Methods Long-Timescale Simulations: Challenges, Pitfalls, Best Practices, for Development and Applications Modeling Tools for Magnetism, Magnetic Materials, and Spintronics: Overview Time-Dependent Density Functional Theory for Spin Dynamics Landau-Lifshitz-Bloch Approach for Magnetization Dynamics Close to Phase Transition Density Functional Theory for Magnetism and Magnetic Anisotropy Spin Excitations in Solid from Many-Body Perturbation Theory Non-equilibrium Green's Function Methods for Spin Transport and Dynamics Spintronics in Micromagnetics Quantum Monte Carlo for Electronic Systems Containing d and f Electrons Atomistic Spin-Lattice Dynamics Modeling of Microstructure Evolution: Mesoscale Challenges Mesoscale Modeling of Dislocation-Interactions in Multilayered Materials Advances in Discrete Dislocation Dynamics Simulations Mesoscale, Microstructure-Sensitive Modeling for Interface-Dominated, Nanostructured Materials Adaptive Physics Refinement at the Microstructure Scale Synchrotron Capabilities to Understand Microstructure of Additively Manufactured Materials: Challenges and Opportunities for Modeling and Simulations Computational Modeling of Morphology Evolution in Metal-Based Battery Electrodes Incorporating the Element of Stochasticity in Coarse-Grained Modeling of Materials Mechanics Shear Transformation Zone Dynamics Modeling of Deformation in Metallic Glasses Kinetic Monte Carlo Modeling of Martensitic Phase Transformation Dynamics Object Kinetic Monte Carlo (OKMC): A Coarse-Grained Approach to Radiation Damage The Stochastic Nature of Deformation Twinning: Application to HCP Materials Soft Matter/Polymer Simulations and Bridging Scales: Overview Polymer Solutions From the Atomistic to the Macromolecular Scale: Distinct Simulation Approaches for Polyelectrolyte Solutions Resolving Properties of Entangled Polymers Melts Through Atomistic Derived Coarse-Grained Models Top-Down Hybrid Models of Polymers Multiscale Concepts in Simulations of Organic Semiconductors Adaptive Resolution Molecular Dynamics Technique Data-Driven Methods in Multiscale Modeling of Soft Matter Hydrodynamics in Motile Active Matter Recent Advances in Crystal Plasticity Modeling Ab Initio Models of Dislocations Modeling the Thermally Activated Mobility of Dislocations at the Atomic Scale Dislocation Analysis Tool for Atomistic Simulations Line Dislocation Dynamics Simulations with Complex Physics Continuum Dislocation Dynamics: Classical Theory and Contemporary Models Connecting Lower and Higher Scales in Crystal Plasticity Modeling Developing Virtual Microstructures and Statistically Equivalent Representative Volume Elements for Polycrystalline Materials Polycrystal Plasticity Models Based on Green's Functions: Mean-Field Self-Consistent and Full-Field Fast Fourier Transform Formulations Computationally Efficient Crystal Plasticity Simulations Using Spectral Databases Advances in Computational Mechanics to Address Challenges in Crystal Plasticity FEM Materials Informatics: Overview The Materials Project: Accelerating Materials Design Through Theory-Driven Data and Tools The AFLOW Fleet for Materials Discovery Open-Science Platform for Computational Materials Science: AiiDA and the Materials Cloud The PAULING FILE Project and Materials Platform for Data Science: From Big Data Toward Materials Genome Crystallography Open Database (COD) Quantum Machine Learning in Chemistry and Materials Machine Learning of Atomic-Scale Properties Based on Physical Principles Machine Learning and Big-Data in Computational Chemistry

最近チェックした商品