信頼性の物理学・工学(テキスト・第2版)<br>Reliability Physics and Engineering : Time-to-Failure Modeling (2ND)

  • ポイントキャンペーン

信頼性の物理学・工学(テキスト・第2版)
Reliability Physics and Engineering : Time-to-Failure Modeling (2ND)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 399 p.
  • 商品コード 9783319001210

Full Description


"Reliability Physics and Engineering" provides critically important information for designing and building reliable cost-effective products. The textbook contains numerous example problems with solutions. Included at the end of each chapter are exercise problems and answers. "Reliability Physics and Engineering" is a useful resource for students, engineers, and materials scientists.

Contents

1 Introduction2 Materials and Device Degradation2.1 Material/Device Parameter Degradation Modeling2.1.1 Material/Device Parameter Decreases With Time2.1.2 Material/Device Parameter Increases With Time2.2 General Time-Dependent Degradation Models2.3 Degradation Rate Modeling2.4 Delays in the Start of Degradation2.5 Competing Degradation Mechanisms3 From Material/Device Degradation to Time-To-Failure 3.1 Time-To-Failure3.2 Time-To-Failure Kinetics4 Time-To-Failure Modeling 4.1 Flux-Divergence Impact on Time-To-Failure4.2 Stress Dependence and Activation Energy4.3 Conservative Time-To-Failure Models 4.4 Time-To-Failure Modeling Under High Stress References 5 Gaussian Statistics - An Overview 5.1 Normal Distribution5.2 Probability Density Function5.3 Statistical Process ControlReferences6 Time-To-Failure Statistics6.1 Lognormal Probability Density Function6.2 Weibull Probability Density Function6.3 Multimodal Distributions6.3.1 Multimodal Distribution (Separated In Time)6.3.2 Mixed Multiple Failure MechanismsReferences7 Failure Rate Modeling7.1 Device Failure Rate 7.2 Average Failure Rate7.2.1 Lognormal Average Failure Rate7.2.2 Weibull Average Failure Rate7.3 Instantaneous Failure Rate7.3.1 Lognormal Instantaneous Failure Rate7.3.2 Weibull Instantaneous Failure Rate 7.4 Bathtub Curve7.5 Failure Rate for Electronic DevicesReferences 8 Accelerated Degradation8.1 Metastable States8.2 Impact of Temperature on Degradation Rate8.3 Free-Energy of Activation 8.4 Impact of Stress and Temperature on Degradation Rate 8.4.1 Real Versus Virtual Stresses8.4.2 Impact of Stress on Materials/Devices8.5 Accelerated Degradation RatesReferences9 Acceleration Factor Modeling9.1 Acceleration Factor 9.2 Power-Law Versus Exponential Acceleration 9.3 Cautions Associated with Accelerated Testing 9.4 Conservative Acceleration Factors References10 Ramp-To-Failure Testing 10.1 Ramp-To-Failure Testing 10.2 Linear Ramp-Rate10.2.1 Linear Ramp with Exponential Acceleration10.2.2 Linear Ramp with Power-Law Acceleration10.3 Breakdown/Rupture Distributions 10.4 Cautions Associated With Ramp-To-Failure Testing10.5 Transforming Breakdown/Rupture Distributions Into Constant-Stress Time-To-Failure Distributions10.5.1 Transforming Breakdown/Rupture Distribution Time-To-Failure Distribution Using Exponential Acceleration10.5.2 Transforming Breakdown/Rupture Distribution to Time-To-Failure Distribution Using Power-Law Acceleration10.6 Constant-Stress Lognormal Time-To-Failure Distributions From Ramp Breakdown/Rupture Data10.6.1 Exponential Acceleration10.6.2 Power-Law Acceleration 10.7 Constant-Stress Weibull Time-To-Failure Distributions From Ramp Breakdown/Rupture Data 10.7.1 Exponential Acceleration10.7.2 Power-Law Acceleration References11 Time-To-Failure Models for Selected Failure Mechanisms in Integrated Circuits11.1 Electromigration (EM)11.2 Stress Migration (SM)11.2.1 SM in Aluminum Interconnects11.2.2 SM in Copper Interconnects11.3 Corrosion 11.3.1 Exponential Reciprocal-Humidity Model11.3.2 Power-Law Humidity Model11.3.3 Exponential Humidity Model 11.4 Thermal-Cycling/Fatigue Issues11.5 Time-Dependent Dielectric Breakdown (TDDB)11.5.1 Exponential E-Model11.5.2 Exponential 1/E - Model11.5.3 Power-Law Voltage V-Model11.5.4 Exponential - Model11.5.5 Which TDDB Model to Use11.5.6 Complementary Electric-Field and Current-Models11.6 Mobile-Ions/Surface-Inversion11.7 Hot-Carrier Injection (HCI)11.8 Negative-Bias Temperature Instability (NBTI)References12 Time-To-Failure Models for Selected Failure Mechanisms In Mechanical Engineering 12.1 Molecular Bonding in Materials12.2 Origin of Mechanical Stresses in Materials12.3 Elastic Behavior of Materials 12.4 Inelastic/Plastic Behavior of Materials12.5 Important Defects Influencing Material Properties 12.5.1 Vacancies12.5.2 Dislocations 12.5.3 Grain Boundaries 12.6 Fracture Strength of Materials12.7 Stress Relief in Materials12.8 Creep-Induced Failures12.8.1 Creep Under Constant-Load/Stress Conditions12.8.2 Creep Under Constant-Strain Conditions 12.9 Crack-Induced Failures12.9.1 Stress Raisers/Risers at Crack Tips12.9.2 Strain-Energy Release Rate12.9.3 Fast Fracture/Rupture12.10 Fatigue-Induced Failures12.10.1 Fatigue for Materials (No Pre-Existing Cracks)12.10.2 Low-Cycle Fatigue12.10.3 High-Cycle Fatigue12.10.4 Fatigue for Materials (With Pre-Existing Cracks)12.11 Adhesion Failures 12.12 Thermal-Expansion Induced Failures12.12.1 Thermal Expansion12.12.2 Constrained Thermal Expansion12.12.3 Thermal-Expansion Mismatch 12.12.4 Thin Films on Thick Substrates12.13 Corrosion-Induced Failures12.13.1 Dry Oxidation12.13.2 Wet Oxidation12.13.3 Impact of Stress on Corrosion RatesReferences13 Conversion of Dynamical Stresses Into Effective Static Values13.1 Effective Static-Stress Equivalent Values13.2 Effective Static-Stress Equivalent Values When Using Power-Law TF Models13.3 Effective Static-Stress Equivalent Values When Using Exponential TF Models13.4 Conversion Of A Dynamical Stress Pulse Into A Rectangular Stress Pulse Equivalent13.4.1 Effective Rectangular Pulse Stress-Equivalent Values for Power-Law TF Models13.4.2 Effective Rectangular Pulse Stress-Equivalent for Exponential TF Models13.4.3 Numerical Integration13.5 Effective Static-Temperature Equivalents 13.6 Mission Profiles13.7 Avoidance of Resonant Frequencies 14 Increasing the Reliability of Device/Product Designs 14.1 Reliability Enhancement Factor 14.2 Electromigration Design Considerations 14.3 TDDB Design Considerations 14.4 NBTI Design Considerations 14.5 HCI Design Considerations 14.6 Surface Inversion Design Considerations14.7 Creep Design Considerations14.7.1 Creep in Rotors14.7.2 Creep in Pressurized Vessels14.7.3 Creep in Leaf Springs14.7.4 Stress Relaxation in Clamps/Fasteners 14.8 Fatigue Design Considerations14.8.1 Fatigue in Storage Vessels14.8.2 Fatigue in Integrated Circuits 15 Screening15.1 Breakdown/Strength Distribution for Materials and Devices15.2 Impact of Screening Stress on Breakdown Strength15.2.1 Screening Using Exponential TF Model15.2.2 Screening Using Power-Law TF Model15.3 Screening Effectiveness15.3.1 Screening Effectiveness Using Exponential TF Model15.3.2 Screening Effectiveness Using Power-Law TF Model 16 Heat Generation and Dissipation16.1 Device Self-Heating and Heat Transfer16.1.1 Energy Conservation16.1.2 General Heat Flow Equation 16.2 Steady-State Heat Dissipation16.3 Effective Thermal Resistance16.4 General Transient Heating and Heat Dissipation16.4.1 Effective Thermal Resistance Revisited16.4.2 Heat Capacity 16.5 Modeling Dynamical Heat Generation and Dissipation 16.5.1 Thermal Relaxation16.5.2 Thermal Rise with Constant Input Power16.5.3 Thermal Rise and Relaxation with Single Power Pulse 16.5.4 Thermal Rises and Relaxations with Periodic Power Pulses 16.6 Convection Heat Transfer16.7 Radiation Heat Transfer 16.8 Entropy Changes Associated With Heat TransferReferences17 Sampling Plans and Confidence Intervals17.1 Poisson Distribution17.1.1 Poisson Probability for Finding Defective Devices17.1.2 Poisson Sample-Size Requirements 17.2 Binomial Distribution17.2.1 Binomial Probability for Finding Defective Devices17.2.2 Binomial Sample-Size Requirements 17.3 Chi-Square Distribution17.3.1 Chi-Square Confidence Intervals17.3.2 Chi-Square Distribution for Defect Sampling17.4 Confidence Intervals for Characteristic Time-To-Failure and Dispersion Parameters17.4.1 Normal Distribution Confidence Intervals17.4.2 Lognormal Distribution Confidence Intervals17.4.3 Weibull Distribution Confidence Intervals17.4.4 Chi-Square Distribution Confidence Intervals Average Failure RatesReferencesAppendix A: Useful Conversion FactorsAppendix B: Useful Physical Constants Appendix C: Useful Rough Rules-Of-ThumbAppendix D: Useful Mathematical ExpressionsAppendix E: Useful Differentials and Definite IntegralsAppendix F: Free-EnergyAppendix G: t(1- /2, ) Distribution ValuesAppendix H: 2(P, ) Distribution ValuesIndex

最近チェックした商品