The Essentials of Measure Theory (Universitext) (2. Aufl. 2026. Approx. 335 p. 235 mm)

個数:
  • 予約

The Essentials of Measure Theory (Universitext) (2. Aufl. 2026. Approx. 335 p. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9783032126627

Full Description

Classical in its approach, this textbook is thoughtfully designed and composed in two parts. Part I is meant for a one-semester beginning graduate course in measure theory, proposing an "abstract" approach to measure and integration, where the classical concrete cases of Lebesgue measure and Lebesgue integral are presented as an important particular case of general theory. Part I may be also accessible to advanced undergraduates who fulfill the prerequisites which include an introductory course in analysis, linear algebra (Chapter 5 only), and elementary set theory. Part II of the text is more advanced and is addressed to a more experienced reader. The material is designed to cover another one-semester graduate course subsequent to a first course, dealing with measure and integration in topological spaces.  With modest prerequisites, this text is intended to meet the needs of a contemporary course in measure theory for mathematics students and is also accessible to a wider student audience, namely those in statistics, economics, engineering, and physics.

The final section of each chapter in Part I presents problems that are integral to each chapter, the majority of which consist of auxiliary results, extensions of the theory, examples, and counterexamples. Problems which are highly theoretical have accompanying hints. The last section of each chapter of Part II consists of Additional Propositions containing auxiliary and complementary results. The entire book contains collections of suggested readings at the end of each chapter in order to highlight alternate approaches, proofs, and routes toward additional results. This second edition adds a new discussion on probability measures, some of which are scattered among proposed problems in Part I and all of them summarized in the Appendix to Part I. Chapters on decomposition of measures and representation theorems include substantially more material. A comprehensive discussion on the Cantor-Lebesque measure can be found in problems 7.15 and 7.16. Rajchman measures have been considered in Problems 7.17 and 7.18. There is a new subsection on Borel regular measures on topological spaces in Section 12.4.

Contents

Preface.- Part I. Introduction to Measure and Integration.-1. Measurable Functions.- 2. Measure on a σ-Algebra.- 3. Integral of Nonnegative Functions.- 4. Integral of Real-Valued Functions.- 5. Banach Spaces Lp.- 6. Convergence of Functions.- 7. Decomposition of Measures.- 8. Extension of Measures.- 9. Product Measures.- Part II.- 10. Remarks on Integrals.- 11. Borel Measure.- 12. Representation Theorems.- 13. Invariant Measures.- References.- Index.

最近チェックした商品