Quantum Robustness in Artificial Intelligence : Principles and Applications (Quantum Science and Technology)

個数:
  • 予約

Quantum Robustness in Artificial Intelligence : Principles and Applications (Quantum Science and Technology)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 450 p.
  • 言語 ENG
  • 商品コード 9783032111524

Full Description

This book surveys state-of-the-art research on adversarial robustness of quantum machine learning algorithms. Despite their high efficiency and accuracy, classical ML and AI algorithms can be easily fooled by an adversary through manipulation or spoofing of data (also known as adversarial attacks), which poses serious security ramifications. On the other hand, the integration of quantum computing in ML and AI is progressing rapidly to create new quantum ML/AI models which are designed to fundamentally exploit quantum mechanical properties to gain advantages in aspects such as training speed or feature extraction accuracy. This raises the important question of whether quantum AI algorithms are as vulnerable as classical AI models. Recent work has shown that quantum AI algorithms are remarkably robust against adversarial attacks. This offers a unique opportunity to leverage quantum computing, specifically its unique properties like superposition and entanglement, to develop highly resistant quantum AI systems. This shift is crucial for enhancing the safety and reliability of AI in security-sensitive applications. This book provides a comprehensive overview of the research in the emerging field of quantum adversarial AI, presenting seminal work from world-leading quantum AI experts on quantum AI and its benchmarking against adversarial attacks. It provides an essential reference for graduate students and industry experts who are interested in quantum AI for security-sensitive autonomous systems. 

Contents

Fundamentals of Quantum Machine Learning and Robustness.- Adversarial Robustness in Quantum Machine Learning.- Adversarial Attack Transferability of Quantum and Classical Classifiers.- Fundamental questions on robustness and accuracy for classical and quantum learning algorithms.- Adversarial Threats in Quantum Machine Learning: A Survey of Attacks and Defenses.

最近チェックした商品