Topological Data Analysis for Neural Networks (Springerbriefs in Computer Science)

個数:
  • 予約

Topological Data Analysis for Neural Networks (Springerbriefs in Computer Science)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 100 p.
  • 言語 ENG
  • 商品コード 9783032082824

Full Description

This book offers a comprehensive presentation of methods from topological data analysis applied to the study of neural network structure and dynamics. Using topology-based tools such as persistent homology and the Mapper algorithm, the authors explore the intricate structures and behaviors of fully connected feedforward and convolutional neural networks. 

The authors discuss various strategies for extracting topological information from data and neural networks, synthesizing insights and results from over 40 research articles, including their own contributions to the study of activations in complete neural network graphs. Furthermore, they examine how this topological information can be leveraged to analyze properties of neural networks such as their generalization capacity or expressivity. Practical implications of the use of topological data analysis in deep learning are also discussed, with a focus on areas including adversarial detection and model selection. The authors conclude with a summary of key insights along with a discussion of current challenges and potential future developments in the field.

This monograph is ideally suited for mathematicians with a background in topology who are interested in the applications of topological data analysis in artificial intelligence, as well as for computer scientists seeking to explore the practical use of topological tools in deep learning.

Contents

Chapter 1. Introduction.- Part I Fundamentals.- Chapter 2. Deep Learning.- Chapter 3. Topological Data Analysis.- Part II Interactions.- Chapter 4. Challenges in Deep Learning.- Chapter 5. Input and Output Spaces.- Chapter 6. Internal Representations and Activations.- Chapter 7. Training Dynamics and Loss Functions.- Chapter 8. Challenges, Future Directions, and Conclusions.

最近チェックした商品