Medical Image Understanding and Analysis : 29th Annual Conference, MIUA 2025, Leeds, UK, July 15-17, 2025, Proceedings, Part III (Lecture Notes in Computer Science 15918) (2025. x, 340 S. X, 340 p. 235 mm)

個数:

Medical Image Understanding and Analysis : 29th Annual Conference, MIUA 2025, Leeds, UK, July 15-17, 2025, Proceedings, Part III (Lecture Notes in Computer Science 15918) (2025. x, 340 S. X, 340 p. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783031986932

Full Description

The three-volume set LNCS 15916,15917 & 15918 constitutes the refereed proceedings of the 29th Annual Conference on Medical Image Understanding and Analysis, MIUA 2025, held in Leeds, UK, during July 15-17, 2025.

The 67 revised full papers presented in these proceedings were carefully reviewed and selected from 99 submissions. The papers are organized in the following topical sections:

Part I: Frontiers in Computational Pathology; and Image Synthesis and Generative Artificial Intelligence.

Part II: Image-guided Diagnosis; and Image-guided Intervention.

Part III: Medical Image Segmentation; and Retinal and Vascular Image Analysis.

Contents

.- Medical Image Segmentation.
.- TransE2UNet: Edge Guided TransEfficientUNET for Generalized Colon Polyp Segmentation from Endoscopy Images.
.- CA-Seg: An Attribute-based Medical Image Segmentation Framework for Unified Out-of-distributed Medical Image Segmentation.
.- TotalSegmentator 2D: A Tool for Rapid Anatomical Structure Analysis.
.- Promptable Cancer Segmentation Using Minimal Expert-curated Data.
.- SPARS: Self-Play Adversarial Reinforcement Learning for Segmentation of Liver Tumours.
.- Semantic Segmentation with Spreading Scribbles.
.- A Hybrid Transformer-Graph Model for Multi-Class Lymph Node Segmentation in Histopathology.
.- Exploring Context-Switching in Medical Image Retrieval Using Segmentation Models.
.- Segmentation in Histopathology Utilising Simulated Masked Patches.
.- A Feature-Driven Acquisition Strategy Using Scale-Invariant Descriptors for Deep Active Learning in Preclinical CT Segmentation.
.- Quantifying Inter-Annotator Agreement and Generalist Model Limitations in Imaging Mass Cytometry Single Cell Segmentation.
.- Subcortical Masks Generation in CT Images via Ensemble-Based Cross-Domain Label Transfer.
.- DRASU-Net: Dual-backbone and Residual Atrous Squeeze module-aided U-Net Model for Polyp Segmentation.
.- PolypDINO: Adapting DINOv2 for Domain Generalized Polyp Segmentation.
.- Intraoperative Segmentation Through Deep Learning and Mask Post-processing in Laparoscopic Liver Surgery.
.- Retinal and Vascular Image Analysis.
.- Hessian-based Deep Retinal Vessel Segmentation with Extremely Few Annotations.
.- Diffusion with Adversarial Fine-Tuning for Improving Rare Retinal Disease Diagnosis.
.- Deep Learning for Cardiovascular Risk Assessment: Proxy Features from Carotid Sonography as Predictors of Arterial Damage.
.- Enhanced Coronary Artery Segmentation in CTCA Using Bridging Centreline Integration.
.- QD-RetNet: Efficient Retinal Disease Classification via Quantized Knowledge Distillation.
.- Exploring the Effectiveness of Deep Features from Domain-Specific Foundation Models in Retinal Image Synthesis.
.- GenVOG: A Diffusion Probabilistic Framework for Patient-Independent Pose-Guided Nystagmus Video-Oculography (VOG) Generation.
.- Structurally Different Neural Network Blocks for the Segmentation of Atrial and Aortic Perivascular Adipose Tissue in Multi-centre CT Angiography Scans.

最近チェックした商品