連続体理論(テキスト)<br>Continuum Theory (Universitext) (2025. xvii, 239 S. XVII, 239 p. 60 illus., 17 illus. in color. 235 mm)

個数:

連続体理論(テキスト)
Continuum Theory (Universitext) (2025. xvii, 239 S. XVII, 239 p. 60 illus., 17 illus. in color. 235 mm)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783031910104

Full Description

This graduate textbook provides a natural and structured introduction to Continuum Theory, guiding readers from fundamental concepts to advanced topics. It covers classical results such as locally connected continua, indecomposable continua, arcs, circles, finite graphs, dendroids, and the relationship between the Cantor set and continua. The second half explores the theory of hyperspaces, presenting various models, their properties, and key theorems, while also highlighting elegant and lesser-known mathematical results.

Designed for readers with an understanding of basic topology, this book serves as a valuable resource for PhD students and researchers in mathematics. It offers a rigorous and thorough approach, with detailed proofs that clarify complex arguments—especially regarding the intricate properties of the pseudo-arc. A wealth of exercises helps reinforce understanding and develop problem-solving skills.

This book stands out for its depth and breadth, covering a range of topics. It provides a comprehensive study of hyperspace models, the homogeneity of the Hilbert cube, and the pseudo-arc, offering one of the few accessible and complete proofs of its unique properties. With its structured progression and careful exposition, this book is a valuable reference for anyone interested in continuum theory.

Contents

Chapter 1. Introduction.- Chapter 2. Locally Connected Continua.- Chapter 3. CuttingWires and Bumping Boundaries.- Chapter 4. Indecomposable Continua.- Chapter 5. Characterizing Arcs and Circles.- Chapter 6. Finite Graphs.- Chapter 7. Dendroids.- Chapter 8. The Cantor Set.- Chapter 9. Hyperspaces of Continua.- Chapter 10. Models of Hyperspaces.- Chapter 11. Irreducible Continua.- Chapter 12. Unicoherence.- Chapter 13. The Fixed Point Property.- Chapter 14. Inverse Limits.- Chapter 15. Homogeneity of the Hilbert Cube.- Chapter 16. Absolute Retracts.- Chapter 17. Stronger Properties of the Pseudo-Arc.

最近チェックした商品