Deep Learning in Computational Mechanics : An Introductory Course (2. Aufl. 2025. xxvi, 476 S. XXVI, 476 p. 192 illus., 127 illus. in col)

個数:
  • 予約

Deep Learning in Computational Mechanics : An Introductory Course (2. Aufl. 2025. xxvi, 476 S. XXVI, 476 p. 192 illus., 127 illus. in col)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031895289

Full Description

This book provides a first course without requiring prerequisite knowledge. Fundamental concepts of machine learning are introduced before explaining neural networks. With this knowledge, prominent topics in deep learning for simulation are explored. These include surrogate modeling, physics-informed neural networks, generative artificial intelligence, Hamiltonian/Lagrangian neural networks, input convex neural networks, and more general machine learning techniques.

The idea of the book is to provide basic concepts as simple as possible but in a mathematically sound manner. Starting point are one-dimensional examples including elasticity, plasticity, heat evolution, or wave propagation. The concepts are then expanded to state-of-the-art applications in material modeling, generative artificial intelligence, topology optimization, defect detection, and inverse problems.

Contents

Computational Mechanics Meets Artificial Intelligence.- Neural Networks.- Machine Learning in Computational Mechanics.- Methodological Overview of Deep Learning in Computational Mechanics.- Index.

最近チェックした商品