Structured Representation Learning : From Homomorphisms and Disentanglement to Equivariance and Topography (Synthesis Lectures on Computer Vision) (2025. x, 140 S. X, 140 p. 240 mm)

個数:

Structured Representation Learning : From Homomorphisms and Disentanglement to Equivariance and Topography (Synthesis Lectures on Computer Vision) (2025. x, 140 S. X, 140 p. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031881107

Full Description

This book introduces approaches to generalize the benefits of equivariant deep learning to a broader set of learned structures through learned homomorphisms.  In the field of machine learning, the idea of incorporating knowledge of data symmetries into artificial neural networks is known as equivariant deep learning and has led to the development of cutting edge architectures for image and physical data processing. The power of these models originates from data-specific structures ingrained in them through careful engineering.  To-date however, the ability for practitioners to build such a structure into models is limited to situations where the data must exactly obey specific mathematical symmetries.  The authors discuss naturally inspired inductive biases, specifically those which may provide types of efficiency and generalization benefits through what are known as homomorphic representations, a new general type of structured representation inspired from techniques in physics and neuroscience.  A review of some of the first attempts at building models with learned homomorphic representations are introduced.  The authors demonstrate that these inductive biases improve the ability of models to represent natural transformations and ultimately pave the way to the future of efficient and effective artificial neural networks. 

Contents

Introduction.- Background.- Topographical Variational AutoEncoders.- Neural Wave Machines.- Latent Traversal as Potential Flows.- Flow Factorized Representation Learning.- Unsupervised Factorzied Representation Learning through SparseTransformation Analysis.- Conclusion.

最近チェックした商品