Foundation Models for General Medical AI : Second International Workshop, MedAGI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings (Lecture Notes in Computer Science) (2025)

個数:

Foundation Models for General Medical AI : Second International Workshop, MedAGI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings (Lecture Notes in Computer Science) (2025)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 174 p.
  • 商品コード 9783031734700

Full Description

This book constitutes the refereed proceedings from the Second International Workshop on Foundation Models for General Medical AI, MedAGI 2024, held in conjunction with the 27th International conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, in Marrakesh, Morocco in October 2024.

The 17 papers included in this book were carefully reviewed and selected from 26 submissions. These papers provide insights into the current landscape of medical AI and foundation models, that can pave the way for the evolution of task-specific medical AI systems into more generalized frameworks capable of tackling a diverse range of tasks, datasets, and domains.

Contents

.- FastSAM-3DSlicer: A 3D-Slicer Extension for 3D Volumetric Segment Anything Model with Uncertainty Quantification.

.- The Importance of Downstream Networks in Digital Pathology Foundation Models.

.- Temporal-spatial Adaptation of Promptable SAM Enhance Accuracy and Generalizability of cine CMR Segmentation.

.- Navigating Data Scarcity using Foundation Models: A Benchmark of Few-Shot and Zero-Shot Learning Approaches in Medical Imaging.

.- AutoEncoder-Based Feature Transformation with Multiple Foundation Models in Computational Pathology.

.- OSATTA: One-Shot Automatic Test Time Augmentation for Domain Adaptation.

.- Automating MedSAM by Learning Prompts with Weak Few-Shot Supervision.

.- SAT-Morph: Unsupervised Deformable Medical Image Registration using Vision Foundation Models with Anatomically Aware Text Prompt.

.- Promptable Counterfactual Diffusion Model for Unified Brain Tumor Segmentation and Generation with MRIs.

.- D- Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions.

.- Optimal Prompting in SAM for Few-Shot and Weakly Supervised Medical Image Segmentation.

.- UniCrossAdapter: Multimodal Adaptation of CLIP for Radiology Report Generation.

.- TUMSyn: A Text-Guided Generalist model for Customized Multimodal MR Image Synthesis.

.- SAMU: An Efficient and Promptable Foundation Model for Medical Image Segmentation.

.- Anatomical Embedding-Based Training Method for Medical Image Segmentation Foundation Models.

.- Boosting Vision-Language Models for Histopathology Classification: Predict all at once.

.- MAGDA: Multi-agent guideline-driven diagnostic assistance.

最近チェックした商品