Artificial Neural Networks and Machine Learning - ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17-20, 2024, Proceedings, Part X (Lecture Notes in Computer Science) (2024)

個数:

Artificial Neural Networks and Machine Learning - ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17-20, 2024, Proceedings, Part X (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 438 p.
  • 商品コード 9783031723582

Full Description

The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17-20, 2024.

The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics: 

Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning.

Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods.

Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision.

Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intelligence; robotics; and reinforcement learning.

Part V - graph neural networks; and large language models.

Part VI - multimodality; federated learning; and time series processing.

Part VII - speech processing; natural language processing; and language modeling.

Part VIII - biosignal processing in medicine and physiology; and medical image processing.

Part IX - human-computer interfaces; recommender systems; environment and climate; city planning; machine learning in engineering and industry; applications in finance; artificial intelligence in education; social network analysis; artificial intelligence and music; and software security.

Part X - workshop: AI in drug discovery; workshop: reservoir computing; special session: accuracy, stability, and robustness in deep neural networks; special session: neurorobotics; and special session: spiking neural networks.

Contents

.- Workshop: AI in Drug Discovery.

.- Combinatorial Library Neural Network (CoLiNN) for Combinatorial Library Visualization without Compound  Enumeration.

.- De novo Drug Design - Do We Really Want To Be  "Original"?

.- Elucidation of Molecular Substructures from Nuclear Magnetic Resonance Spectra using Gradient Boosting.

.- Neural SHAKE: Geometric Constraints in Graph Generative Models.

.- Scaffold Splits Overestimate Virtual Screening  Performance.

.- Target-Aware Drug Activity Model: A deep learning approach to virtual HTS.

.- Workshop: Reservoir Computing.

.- Effects of Input Structure and Topology on Input-Driven  Functional Connectivity Stability.

.- Non-dissipative Reservoir Computing approaches for time-series classification.

.- Onion Echo State Networks A Preliminary Analysis of Dynamics.

.- Oscillation-driven Reservoir Computing for Long-Term Replication of Chaotic Time Series.

.- Prediction of reaching movements with target information towards trans-humeral prosthesis control using Reservoir Computing and LSTMs.

.- Reducing Reservoir Dimensionality with Phase Space Construction for Simplified Hardware

Implementation.

.- Restricted Reservoirs on Heterogeneous Timescales.

.- Special Session: Accuracy, Stability, and Robustness in Deep Neural Networks.

.- Clean-image Backdoor Attacks.

.- MADE: A Universal Fine-tuning Framework to Enhance Robustness of Machine Reading Comprehension.

.- Robustness of biologically grounded neural networks against image perturbations.

.- Some Comparisons of Linear and Deep ReLU Network Approximation.

.- Unlearnable Examples Detection via Iterative Filtering.

.- Special Session: Neurorobotics.

.- Action recognition system integrating motion and object detection.

.- Active Vision for Physical Robots using the Free Energy Principle.

.- Learning Low-Level Causal Relations using a Simulated Robotic Arm.

.- Modular Reinforcement Learning In Long-Horizon Manipulation Tasks.

.- Robotic Model of the Mirror Neuron System: a Revival.

.- Self-organized attractoring in locomoting animals and robots: an emerging field.

.- Special Session: Spiking Neural Networks.

.- A Multi-modal Spiking Meta-learner With Brain-inspired Task-aware Modulation Scheme.

.- Event-Based Hand Detection on Neuromorphic Hardware Using a Sigma Delta Neural Network.

.- Learning in Recurrent Spiking Neural Networks with Sparse full-FORCE Training.

.- Natively neuromorphic LMU architecture for encoding-free SNN-based HAR on commercial edge devices.

.- Obtaining Optimal Spiking Neural Network in Sequence Learning via CRNN-SNN Conversion.

.- On Reducing Activity with Distillation and Regularization for Energy Ecient Spiking

Neural Networks.

.- Temporal Contrastive Learning for Spiking Neural

Networks.

最近チェックした商品