浅い学習vs.深層学習:機械学習ソリューションのための実践的ガイド<br>Shallow Learning vs. Deep Learning : A Practical Guide for Machine Learning Solutions (The Springer Series in Applied Machine Learning) (2024)

個数:

浅い学習vs.深層学習:機械学習ソリューションのための実践的ガイド
Shallow Learning vs. Deep Learning : A Practical Guide for Machine Learning Solutions (The Springer Series in Applied Machine Learning) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 275 p.
  • 商品コード 9783031694981

Full Description

This book explores the ongoing debate between shallow and deep learning in the field of machine learning. It provides a comprehensive survey of machine learning methods, from shallow learning to deep learning, and examines their applications across various domains. Shallow Learning vs Deep Learning: A Practical Guide for Machine Learning Solutions emphasizes that the choice of a machine learning approach should be informed by the specific characteristics of the dataset, the operational environment, and the unique requirements of each application, rather than being influenced by prevailing trends.

In each chapter, the book delves into different application areas, such as engineering, real-world scenarios, social applications, image processing, biomedical applications, anomaly detection, natural language processing, speech recognition, recommendation systems, autonomous systems, and smart grid applications. By comparing and contrasting the effectiveness of shallow and deep learning in these areas, the book provides a framework for thoughtful selection and application of machine learning strategies. This guide is designed for researchers, practitioners, and students who seek to deepen their understanding of when and how to apply different machine learning techniques effectively. Through comparative studies and detailed analyses, readers will gain valuable insights to make informed decisions in their respective fields.

Contents

Survey of machine learning methods from shallow learning to deep learning.- Shallow learning vs Deep learning in engineering applications.- Shallow learning vs Deep learning in real-world applications.- Shallow learning vs Deep learning in social applications.- Shallow learning vs Deep learning in image processing applications.- Shallow learning vs Deep learning in biomedical applications.- Shallow learning vs Deep learning in anomaly detection applications.- Shallow learning vs Deep learning in natural language processing applications.- Shallow learning vs Deep learning in speech recognition applications.- Shallow learning vs Deep learning in recommendation systems.- Shallow learning vs Deep learning in autonomous systems.- Shallow Learning vs Deep Learning in Smart Grid Applications.

最近チェックした商品