Left Atrial and Scar Quantification and Segmentation : First Challenge, LAScarQS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings (Lecture Notes in Computer Science)

個数:

Left Atrial and Scar Quantification and Segmentation : First Challenge, LAScarQS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 164 p.
  • 商品コード 9783031317774

Full Description

This book constitutes the First Left Atrial and Scar Quantification and Segmentation Challenge, LAScarQS 2022, which was held in conjunction with the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022, in Singapore, in September 2022.The 15 papers presented in this volume were carefully reviewed and selected form numerous submissions. The aim of the challenge is not only benchmarking various LA scar segmentation algorithms, but also covering the topic of general cardiac image segmentation, quantification, joint optimization, and model generalization, and raising discussions for further technical development and clinical deployment.

Contents

LASSNet: A four steps deep neural network for Left Atrial Segmentation and Scar Quantification.- Multi-Depth Boundary-Aware Left Atrial Scar Segmentation Network.- Self Pre-training with Single-scale Adapter for Left Atrial Segmentation.- UGformer for Robust Left Atrium and Scar Segmentation Across Scanners.- Automatically Segmenting the Left Atrium and Scars from LGE-MRIs Using a boundary-focused nnU-Net.- Two Stage of Histogram Matching Augmentation for Domain Generalization : Application to Left Atrial Segmentation .- Sequential Segmentation of the Left Atrium and Atrial Scars Using a Multi-scale Weight Sharing Network and Boundary-based Processing.- LA-HRNet: High-resolution network for automatic left atrial segmentation in multi-center LEG MRI .- Edge-enhanced Features Guided Joint Segmentation and Quantification of Left Atrium and Scars in LGE MRI Images.- TESSLA: Two-Stage Ensemble Scar Segmentation for the Left Atrium.- Deep U-Net architecture with curriculum learning for leftatrial segmentation.- Cross-domain Segmentation of Left Atrium Based on Multi-scale Decision Level Fusion.- Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation.- Automated segmentation of the left atrium and scar using deep convolutional neural networks.- Automatic Semi-Supervised Left Atrial Segmentation using Deep-Supervision 3DResUnet with Pseudo Labeling Approach for LAScarQS 2022 Challenge.

最近チェックした商品