Medical Optical Imaging and Virtual Microscopy Image Analysis : First International Workshop, MOVI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings (Lecture Notes in Computer Science)

個数:

Medical Optical Imaging and Virtual Microscopy Image Analysis : First International Workshop, MOVI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 190 p.
  • 商品コード 9783031169601

Full Description

This book constitutes the refereed proceedings of the 1st International Workshop on Medical Optical Imaging and Virtual Microscopy Image Analysis, MOVI 2022, held in conjunction with the 25th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2022, in Singapore, Singapore, in September 2022.

The 18 papers presented at MOVI 2022 were carefully reviewed and selected from 25 submissions. The objective of the MOVI workshop is to promote novel scalable and resource-efficient medical image analysis algorithms for high-dimensional image data analy-sis, from optical imaging to virtual microscopy.

Contents

Cell counting with inverse distance kernel and self-supervised learning.- Predicting the visual attention of pathologists evaluating whole slide images of cancer.- Edge-Based Self-Supervision for Semi-Supervised Few-Shot Microscopy Image Cell Segmentation.- Joint Denoising and Super-resolution for Fluorescence Microscopy using Weakly-supervised Deep Learning.- MxIF Q-score: Biology-informed Quality Assurance for Multiplexed Immunofluorescence Imaging.- A Pathologist-Informed Workflow for Classification of Prostate Glands in Histopathology.- Leukocyte Classification using Multimodal Architecture Enhanced by Knowledge Distillation.- Deep learning on lossily compressed pathology images: adverse effects for ImageNet pre-trained models.- Profiling DNA damage in 3D Histology Samples.- Few-shot segmentation of microscopy images using Gaussian process.- Adversarial Stain Transfer to Study the Effect of Color Variation on Cell Instance Segmentation.- Constrained self-supervised method with temporal ensembling for  fiber bundle detection on anatomic tracing data.- Sequential multi-task learning for histopathology-based prediction of genetic mutations with extremely imbalanced labels.- Morph-Net: End-to-End Prediction of Nuclear Morphological Features from Histology Images.- A Light-weight Interpretable Model for Nuclei Detection and Weakly-supervised Segmentation.- A coarse-to-fine segmentation methodology based on deep networks for automated analysis of Cryptosporidium parasite from fluorescence microscopic images.- Swin Faster R-CNN for Senescence Detection of Mesenchymal Stem Cells in Bright-field Images.- Characterizing Continual Learning Scenarios for Tumor Classification in Histopathology Images.

最近チェックした商品