表現論入門(テキスト)<br>An Invitation to Representation Theory : Polynomial Representations of the Symmetric Group (Springer Undergraduate Mathematics Series)

個数:

表現論入門(テキスト)
An Invitation to Representation Theory : Polynomial Representations of the Symmetric Group (Springer Undergraduate Mathematics Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 229 p.
  • 商品コード 9783030980245

Full Description

An Invitation to Representation Theory offers an introduction to groups and their representations, suitable for undergraduates. In this book, the ubiquitous symmetric group and its natural action on polynomials are used as a gateway to representation theory.
The subject of representation theory is one of the most connected in mathematics, with applications to group theory, geometry, number theory and combinatorics, as well as physics and chemistry. It can however be daunting for beginners and inaccessible to undergraduates. The symmetric group and its natural action on polynomial spaces provide a rich yet accessible model to study, serving as a prototype for other groups and their representations. This book uses this key example to motivate the subject, developing the notions of groups and group representations concurrently.
With prerequisites limited to a solid grounding in linear algebra, this book can serve as a first introduction to representation theory at the undergraduate level, for instance in a topics class or a reading course. A substantial amount of content is presented in over 250 exercises with complete solutions, making it well-suited for guided study.

Contents

- 1. First Steps. - 2. Polynomials, Subspaces and Subrepresentations. - 3. Intertwining Maps, Complete Reducibility, and Invariant Inner Products. - 4. The Structure of the Symmetric Group. - 5. Sn-Decomposition of Polynomial Spaces for n = 1, 2, 3. - 6. The Group Algebra. - 7. The Irreducible Representations of Sn: Characters. - 8. The Irreducible Representations of Sn: Young Symmetrizers. - 9. Cosets, Restricted and Induced Representations. - 10. Direct Products of Groups, Young Subgroups and Permutation Modules. - 11. Specht Modules. - 12. Decomposition of Young Permutation Modules. - 13. Branching Relations.

最近チェックした商品