Languages and Compilers for Parallel Computing : 33rd International Workshop, LCPC 2020, Virtual Event, October 14-16, 2020, Revised Selected Papers (Theoretical Computer Science and General Issues)

個数:

Languages and Compilers for Parallel Computing : 33rd International Workshop, LCPC 2020, Virtual Event, October 14-16, 2020, Revised Selected Papers (Theoretical Computer Science and General Issues)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 233 p.
  • 商品コード 9783030959524

Full Description

This book constitutes the thoroughly refereed post-conference proceedings of the 33rd International Workshop on Languages and Compilers for Parallel Computing, LCPC 2020, held in Stony Brook, NY, USA, in October 2020. Due to COVID-19 pandemic the conference was held virtually. The 15 revised full papers were carefully reviewed and selected from 19 submissions. The contributions were organized in topical sections named as follows: Code and Data Transformations; OpenMP and Fortran; Domain Specific Compilation; Machine Language and Quantum Computing; Performance Analysis; Code Generation.

Contents

Code and Data Transformations An Affine Scheduling Framework for Integrating Data Layout and Loop Transformations.- Guiding Code Optimizations with Deep Learning-Based Code Matching.- Expanding Opportunities for Array Privatization in Sparse Computations.- OpenMP and Fortran Concurrent Execution of Deferred OpenMP Target Tasks with Hidden Helper Threads.- Using Hardware Transactional Memory to Implement Speculative Privatization in OpenMP.- Improving Fortran Performance Portability.- Domain Specific Compilation COMET: A Domain-Specic Compilation of High-Performance Computational Chemistry.-  G-Code Re-compilation and Optimization for Faster 3D Printing.- Li Machine Language and Quantum Computing Optimized Code Generation for Deep Neural Networks.- Thermal-Aware Compilation of Spiking Neural Networks to Neuromorphic Hardware.- A Quantum-Inspired Model For Bit-Serial SIMD-Parallel Computation.- Performance Analysis Enhancing the Top-Down Microarchitectural Analysis Method Using Purchasing Power Parity Theory.- Code Generation Cain: Automatic Code Generation for Simultaneous Convolutional Kernels on Focal-plane Sensor-processors.- Reordering Under the ECMAScript Memory Consistency Model.- Verication of Vectorization of Signal Transforms.

最近チェックした商品