量子物理学と機械学習の出会い<br>Machine Learning Meets Quantum Physics (Lecture Notes in Physics)

個数:
電子版価格
¥18,015
  • 電子版あり

量子物理学と機械学習の出会い
Machine Learning Meets Quantum Physics (Lecture Notes in Physics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 467 p.
  • 言語 ENG
  • 商品コード 9783030402440

Full Description

Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume.  

To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials.

 

The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context. 

Contents

Introduction to Material Modeling.- Kernel Methods for Quantum Chemistry.- Introduction to Neural Networks.- Building nonparametric n-body force fields using Gaussian process regression.- Machine-learning of atomic-scale properties based on physical principles.- Quantum Machine Learning with Response Operators in Chemical Compound Space.- Physical extrapolation of quantum observables by generalization with Gaussian Processes.- Message Passing Neural Networks.- Learning representations of molecules and materials with atomistic neural networks.- Molecular Dynamics with Neural Network Potentials.- High-Dimensional Neural Network Potentials for Atomistic Simulations.- Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights.- Active learning and Uncertainty Estimation.- Machine Learning for Molecular Dynamics on Long Timescales.- Database-driven High-Throughput Calculations and Machine Learning Models for Materials Design.- Polymer Genome: A polymer informatics platform to accelerate polymer discovery.- Bayesian Optimization in Materials Science.- Recommender Systems for Materials Discovery.- Generative Models for Automatic Chemical Design.

最近チェックした商品