発展的線形モデル化:統計的学習と依存データ(テキスト・第3版)<br>Advanced Linear Modeling : Statistical Learning and Dependent Data (Springer Texts in Statistics) (3RD)

個数:
電子版価格
¥15,573
  • 電子版あり

発展的線形モデル化:統計的学習と依存データ(テキスト・第3版)
Advanced Linear Modeling : Statistical Learning and Dependent Data (Springer Texts in Statistics) (3RD)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 608 p.
  • 言語 ENG
  • 商品コード 9783030291631
  • DDC分類 519

Full Description

Now in its third edition, this companion volume to Ronald Christensen's Plane Answers to Complex Questions uses three fundamental concepts from standard linear model theory—best linear prediction, projections, and Mahalanobis distance— to extend standard linear modeling into the realms of Statistical Learning and Dependent Data.  
This new edition features a wealth of new and revised content.  In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines.  For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction.  While numerous references to Plane Answers are made throughout the volume, Advanced Linear Modeling can be used on its own given a solid background in linear models.  Accompanying R code for the analyses is available online.

Contents

1. Nonparametric Regression.- 2. Penalized Estimation.- 3. Reproducing Kernel Hilbert Spaces.- 4. Covariance Parameter Estimation.- 5. Mixed Models and Variance Components.- 6. Frequency Analysis of Time Series.- 7. Time Domain Analysis.- 8. Linear Models for Spacial Data: Kriging.- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications.- 11. Generalized Multivariate Linear Models and Longitudinal Data.- 12. Discrimination and Allocation.- 13. Binary Discrimination and Regression.- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis.- A Mathematical Background.- B Best Linear Predictors.- C Residual Maximum Likelihood.- Index.- Author Index.

最近チェックした商品