Special Relativity (Springer Undergraduate Mathematics Series (SUMS)) (2003. IX, 191 p. w. figs. 23,5 cm)

個数:

Special Relativity (Springer Undergraduate Mathematics Series (SUMS)) (2003. IX, 191 p. w. figs. 23,5 cm)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 192 p.
  • 商品コード 9781852334260

基本説明

Contents: Relativity in Classical Mechanics.- Maxwell's Theory.- The Propagation of Light.- Einstein's Special Theory of Relativity.- and more. Written by a well-respected lecturer, and based on a tried and tested course at Oxford.

Full Description

Special relativity is one of the high points of the undergraduate mathematical physics syllabus. Nick Woodhouse writes for those approaching the subject with a background in mathematics: he aims to build on their familiarity with the foundational material and the way of thinking taught in first-year mathematics courses, but not to assume an unreasonable degree of prior knowledge of traditional areas of physical applied mathematics, particularly electromagnetic theory. His book provides mathematics students with the tools they need to understand the physical basis of special relativity and leaves them with a confident mathematical understanding of Minkowski's picture of space-time. Special Relativity is loosely based on the tried and tested course at Oxford, where extensive tutorials and problem classes support the lecture course. This is reflected in the book in the large number of examples and exercises, ranging from the rather simple through to the more involved and challenging. Theauthor has included material on acceleration and tensors, and has written the book with an emphasis on space-time diagrams. Written with the second year undergraduate in mind, the book will appeal to those studying the 'Special Relativity' option in their Mathematics or Mathematics and Physics course. However, a graduate or lecturer wanting a rapid introduction to special relativity would benefit from the concise and precise nature of the book.

Contents

1. Relativity in Classical Mechanics.- 1.1 Frames of Reference.- 1.2 Relativity.- 1.3 Frames of Reference.- 1.4 Newton's Laws.- 1.5 Galilean Transformations.- 1.6 Mass, Energy, and Momentum.- 1.7 Space-time.- 1.8 *Galilean Symmetries.- 1.9 Historical Note.- 2. Maxwell's Theory.- 2.1 Introduction.- 2.2 The Unification of Electricity and Magnetism.- 2.3 Charges, Fields, and the Lorentz Force Law.- 2.4 Stationary Distributions of Charge.- 2.5 The Divergence of the Magnetic Field.- 2.6 Inconsistency with Galilean Relativity.- 2.7 The Limits of Galilean Invariance.- 2.8 Faraday's Law of Induction.- 2.9 The Field of Charges in Uniform Motion.- 2.10 Maxwell's Equations.- 2.11 The Continuity Equation.- 2.12 Conservation of Charge.- 2.13 Historical Note.- 3. The Propagation of Light.- 3.1 The Displacement Current.- 3.2 The Source-free Equations.- 3.3 The Wave Equation.- 3.4 Monochromatic Plane Waves.- 3.5 Polarization.- 3.6 Potentials.- 3.7 Gauge Transformations.- 3.8 Photons.- 3.9 Relativity and the Propagation of Light.- 3.10 The Michelson-Morley Experiment.- 4. Einstein's Special Theory of Relativity.- 4.1 Lorentz's Contraction.- 4.2 Operational Definitions of Distance and Time.- 4.3 The Relativity of Simultaneity.- 4.4 Bondi's fc-Factor.- 4.5 Time Dilation.- 4.6 The Two-dimensional Lorentz Transformation.- 4.7 Transformation of Velocity.- 4.8 The Lorentz Contraction.- 4.9 Composition of Lorentz Transformations.- 4.10 Rapidity.- 4.11 *The Lorentz and Poincaré Groups.- 5. Lorentz Transformations in Four Dimensions.- 5.1 Coordinates in Four Dimensions.- 5.2 Four-dimensional Coordinate Transformations.- 5.3 The Lorentz Transformation in Four Dimensions.- 5.4 The Standard Lorentz Transformation.- 5.5 The General Lorentz Transformation.- 5.6 Euclidean Space and Minkowski Space.- 5.7 Four-vectors.- 5.8 Temporal and Spatial Parts.- 5.9 The Inner Product.- 5.10 Classification of Four-vectors.- 5.11 Causal Structure of Minkowski Space.- 5.12 Invariant Operators.- 5.13 The Frequency Four-vector.- 5.14 * Affine Spaces and Covectors.- 6. Relative Motion.- 6.1 Transformations Between Frames.- 6.2 Proper Time.- 6.3 Four-velocity.- 6.4 Four-acceleration.- 6.5 Constant Acceleration.- 6.6 Continuous Distributions.- 6.7 *Rigid Body Motion.- 6.8 Visual Observation.- 7. Relativistic Collisions.- 7.1 The Operational Definition of Mass.- 7.2 Conservation of Four-momentum.- 7.3 Equivalence of Mass and Energy.- 8. Relativistic Electrodynamics.- 8.1 Lorentz Transformations of E and B.- 8.2 The Four-Current and the Four-potential.- 8.3 Transformations of E and B.- 8.4 Linearly Polarized Plane Waves.- 8.5 Electromagnetic Energy.- 8.6 The Four-momentum of a Photon.- 8.7 *Advanced and Retarded Solutions.- 9. *Tensors and Isomet ries.- 9.1 Affine Space.- 9.2 The Lorentz Group.- 9.3 Tensors.- 9.4 The Tensor Product.- 9.5 Tensors in Minkowski Space.- 9.6 Tensor Components.- 9.7 Examples of Tensors.- 9.8 One-parameter Subgroups.- 9.9 Isometries.- 9.10 The Riemann Sphere and Spinors.-Notes on Exercises.- Vector Calculus.