幾何学的力学Ⅱ(第2版)<br>Geometric Mechanics - Part Ii: Rotating, Translating and Rolling (2nd Edition) (2ND)

個数:

幾何学的力学Ⅱ(第2版)
Geometric Mechanics - Part Ii: Rotating, Translating and Rolling (2nd Edition) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 412 p.
  • 言語 ENG
  • 商品コード 9781848167780
  • DDC分類 531.01516

基本説明

Reviews of the First Edition. I can recommend anyone teaching a course on applied geometric mechanics to consider one or both books for textbooks or recommended reading. The books would be a good starting point for anyone interested in learning more about applied geometric mechanics and symmetry. - Journal of Geometric Mechanics.

Full Description

Featured in the recommended literature list for the International Society of Nonlinear Mathematical Physics: https://isnmp.de/Book-Reviews-and-Recommendations/See also GEOMETRIC MECHANICS — Part I: Dynamics and Symmetry (2nd Edition) This textbook introduces modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. In particular, it explains the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint by formulating their solutions as coadjoint motions generated by Lie groups. The only prerequisites are linear algebra, multivariable calculus and some familiarity with Euler-Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The book uses familiar concrete examples to explain variational calculus on tangent spaces of Lie groups. Through these examples, the student develops skills in performing computational manipulations, starting from vectors and matrices, working through the theory of quaternions to understand rotations, then transferring these skills to the computation of more abstract adjoint and coadjoint motions, Lie-Poisson Hamiltonian formulations, momentum maps and finally dynamics with nonholonomic constraints.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. Many worked examples of adjoint and coadjoint actions of Lie groups on smooth manifolds have also been added and the enhanced coursework examples have been expanded. The second edition is ideal for classroom use, student projects and self-study.

Contents

Galilean Relativity; Reviews of the Contributions of Newton Lagrange, Euler, Hamilton, Lie, Noether and Poincare in the Foundations of Geometric Mechanics; Rotations, Using Quaternions and Their Adjoint and Coadjoint Operations; Special Orthogonal and Special Euclidean Groups; Heavy Tops; Euler-Poincare Equations; Lie-Poisson Hamiltonian Form; Momentum Maps; Round Rolling Bodies.

最近チェックした商品