A Unifying Tutorial on Approximate Message Passing (Foundations and Trends® in Machine Learning)

個数:

A Unifying Tutorial on Approximate Message Passing (Foundations and Trends® in Machine Learning)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 216 p.
  • 言語 ENG
  • 商品コード 9781638280040

Full Description

Over the last decade, Approximate Message Passing (AMP) algorithms have become extremely popular in various structured high-dimensional statistical problems. Many of the original ideas of AMP were developed in the physics and engineering literature and have recently been extended for use in computer science and machine learning. In this tutorial the authors give a comprehensive and rigorous introduction to what AMP can offer, as well as to unifying and formalizing the core concepts within the large body of recent work in the area. They lead the reader through the basic concepts of AMP before introducing the concept of low-rank matrix estimation. The authors conclude by covering generalized models. To complete the picture for researchers, proofs, technical remarks and mathematical background are also provided. This tutorial is an in depth introduction to Approximate Message Passing for students and researchers new to the topic.

Contents

1. Introduction
2. Master Theorems for Abstract AMP Recursions
3. Low-Rank Matrix Estimation
4. GAMP for Generalised Linear Models
5. Conclusions and Extensions
Acknowledgements
Appendices
References

最近チェックした商品