Variational Analysis in Sobolev and BV Spaces : Applications to PDEs and Optimization (Mos-siam Series on Optimization) (2ND)

個数:

Variational Analysis in Sobolev and BV Spaces : Applications to PDEs and Optimization (Mos-siam Series on Optimization) (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 805 p.
  • 言語 ENG
  • 商品コード 9781611973471
  • DDC分類 515.782

Full Description

This volume is an excellent guide for anyone interested in variational analysis, optimization, and PDEs. It offers a detailed presentation of the most important tools in variational analysis as well as applications to problems in geometry, mechanics, elasticity, and computer vision.

Among the new elements in this second edition: the section of Chapter 5 on capacity theory and elements of potential theory now includes the concepts of quasi-open sets and quasi-continuity; Chapter 6 includes an increased number of examples in the areas of linearized elasticity system, obstacles problems, convection-diffusion, and semilinear equations; Chapter 11 has been expanded to include a section on mass transportation problems and the Kantorovich relaxed formulation of the Monge problem; a new subsection on stochastic homogenization in Chapter 12 establishes the mathematical tools coming from ergodic theory, and illustrates them in the scope of statistically homogeneous materials; Chapter 16 has been augmented by examples illustrating the shape optimization procedure; and Chapter 17 is an entirely new and comprehensive chapter devoted to gradient flows and the dynamical approach to equilibria.

Contents

Chapter 1: Introduction
Part I: Basic Variational Principles
Chapter 2: Weak Solution Methods in Variational Analysis
Chapter 3: Abstract Variational Principles
Chapter 4: Complements on Measure Theory
Chapter 5: Sobolev Spaces
Chapter 6: Variational Problems: Some Classical Examples
Chapter 7: The Finite Element Method
Chapter 8: Spectral Analysis of the Laplacian
Chapter 9: Convex Duality and Optimization
Part II: Advanced Variational Analysis
Chapter 10: Spaces BV and SBV
Chapter 11: Relaxation in Sobolev, BV, and Young Measures Spaces
Chapter 12: ?-convergence and Applications
Chapter 13: Integral Functionals of the Calculus of Variations
Chapter 14: Applications in Mechanics and Computer Vision
Chapter 15: Variational Problems with a Lack of Coercivity
Chapter 16: An Introduction to Shape Optimization Problems
Chapter 17: Gradient Flows

最近チェックした商品