4元数と8元数<br>On Quaternions and Octonions

個数:
電子版価格 ¥8,697
  • 電書あり

4元数と8元数
On Quaternions and Octonions

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    ウクライナ情勢悪化・新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。詳しくはこちらをご確認ください。
    海外からのお取り寄せの場合、弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • 製本 Hardcover:ハードカバー版/ページ数 172 p.
  • 言語 ENG
  • 商品コード 9781568811345
  • DDC分類 516.35

基本説明

Topics: History; the geometry of complex numbers; quaternions and 3-dimensional groups; quaternions and 4-dimensional groups; the Hurwitz integral quaternions; and more.

Full Description

This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less familiar octonion algebra, concentrating on its remarkable "triality symmetry" after an appropriate study of Moufang loops. The authors also describe the arithmetics of the quaternions and octonions. The book concludes with a new theory of octonion factorization. Topics covered include the geometry of complex numbers, quaternions and 3-dimensional groups, quaternions and 4-dimensional groups, Hurwitz integral quaternions, composition algebras, Moufang loops, octonions and 8-dimensional geometry, integral octonions, and the octonion projective plane.

Contents

Preface, I The Complex Numbers, 1 Introduction, 1.1 The Algebra ℝ of Real Numbers, 1.2 Higher Dimensions, 1.3 The Orthogonal Groups, 1.4 The History of Quaternions and Octonions, 2 Complex Numbers and 2-Dimensional Geometry, 2.1 Rotations and Reflections, 2.2 Finite Subgroups of GO2 and SO2, 2.3 The Gaussian Integers, 2.4 The Kleinian Integers, 2.5 The 2-Dimensional Space Groups, II The Quaternions, 3 Quaternions and 3-Dimensional Groups, 3.1 The Quaternions and 3-Dimensional Rotations, 3.2 Some Spherical Geometry, 3.3 The Enumeration of Rotation Groups, 3.4 Discussion of the Groups, 3.5 The Finite Groups of Quaternions, 3.6 Chiral and Achiral,Diploid and Haploid, 3.7 The Projective or Elliptic Groups, 3.8 The Projective Groups Tell Us All, 3.9 Geometric Description of the Groups, Appendix: v → v̄qv Is a Simple Rotation, 4 Quaternions and 4-Dimensional Groups, 4.1 Introduction, 4.2 Two 2-to-1Maps, 4.3 Naming the Groups, 4.4 Coxeter's Notations for the Polyhedral Groups, 4.5 Previous Enumerations, 4.6 A Note on Chirality, Appendix: Completeness of the Tables, 5 The Hurwitz Integral Quaternions, 5.1 The Hurwitz Integral Quaternions, 5.2 Primes and Unit, 5.3 Quaternionic Factorization of Ordinary Primes, 5.4 The Metacommutation Problem, 5.5 Factoring the Lipschitz Integers, III The Octonions, 6 The Composition Algebras, 6.1 TheMultiplication Laws, 6.2 The Conjugation Laws, 6.3 The Doubling Laws, 6.4 Completing Hurwitz's Theorem, 6.5 Other Properties of the Algebras, 6.6 The Maps Lx,Rx,and Bx, 6.7 Coordinates for the Quaternions and Octonions, 6.8 Symmetries of the Octonions: Diassociativity, 6.9 The Algebras over Other Fields, 6.10 The 1-,2-,4-,and 8-Square Identities, 6.11 Higher Square Identities: Pfister Theory, Appendix: What Fixes a Quaternion Subalgebra?, 7 Moufang Loops, 7.1 Inverse Loops, 7.2 Isotopies, 7.3 Monotopies and Their Companions, 7.4 Different Forms of the Moufang Laws, 8 Octonions and 8-Dimensional Geometry, 8.1 Isotopies and SO8, 8.2 Orthogonal Isotopies and the Spin Group, 8.3 Triality, 8.4 Seven Rights Can Make a Left, 8.5 Other Multiplication Theorems, 8.6 Three 7-Dimensional Groups in an 8-Dimensional One, 8.7 On Companions, 9 The Octavian Integers O, 9.1 Defining Integrality, 9.2 Toward the Octavian Integers, 9.3 The E8 Lattice of Korkine,Zolotarev,and Gosset, 9.4 Division with Remainder,and Ideals, 9.5 Factorization in O8, 9.6 The Number of Prime Factorizations, 9.7 "Meta-Problems" for Octavian Factorization, 10 Automorphisms and Subrings of O, 10.1 The 240Octavian Units, 10.2 Two Kinds of Orthogonality, 10.3 The Automorphism Group of O, 10.4 The Octavian Unit Rings, 10.5 Stabilizing the Unit Subrings, Appendix: Proof of Theorem5, 11 Reading O Mod 2, 11.1 Why Read Mod 2?, 11.2 The E8 Lattice,Mod 2, 11.3 What Fixes (λ)?, 11.4 The Remaining Subrings Modulo 2, 12 The Octonion Projective Plane OP2, 12.1 The Exceptional Lie Groups and Freudenthal's "Magic Square", 12.2 The Octonion Projective Plane, 12.3 Coordinates for OP2, Bibliography, Index