Understanding Correlation Matrices (Quantitative Applications in the Social Sciences)

個数:
電子版価格
¥5,245
  • 電子版あり

Understanding Correlation Matrices (Quantitative Applications in the Social Sciences)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 136 p.
  • 言語 ENG
  • 商品コード 9781544341095
  • DDC分類 300.1519537

Full Description

Correlation matrices (along with their unstandardized counterparts, covariance matrices) underlie the majority the statistical methods that researchers use today. A correlation matrix is more than a matrix filled with correlation coefficients. The value of one correlation in the matrix puts constraints on the values of the others, and the multivariate implications of this statement is a major theme of the volume. Alexandria Hadd and Joseph Lee Rodgers cover many features of correlations matrices including statistical hypothesis tests, their role in factor analysis and structural equation modeling, and graphical approaches. They illustrate the discussion with a wide range of lively examples including correlations between intelligence measured at different ages through adolescence; correlations between country characteristics such as public health expenditures, health life expectancy, and adult mortality; correlations between well-being and state-level vital statistics; correlations between the racial composition of cities and professional sports teams; and correlations between childbearing intentions and childbearing outcomes over the reproductive life course. This volume may be used effectively across a number of disciplines in both undergraduate and graduate statistics classrooms, and also in the research laboratory.

Contents

Series Editors Introduction
Preface
Acknowledgments
About the Authors
Chapter 1: Introduction
The Correlation Coefficient: A Conceptual Introduction
The Covariance
The Correlation Coefficient and Linear Algebra: Brief Histories
Examples of Correlation Matrices
Summary
Chapter 2: The Mathematics of Correlation Matrices
Requirements of Correlation Matrices
Eigenvalues of a Correlation Matrix
Pseudo-Correlation Matrices and Positive Definite Matrices
Smoothing Techniques
Restriction of Correlation Ranges in the Matrix
The Inverse of a Correlation Matrix
The Determinant of a Correlation Matrix
Examples
Summary
Chapter 3: Statistical Hypothesis Testing on Correlation Matrices
Hypotheses About Correlations in a Single Correlation Matrix
Hypotheses About Two or More Correlation Matrices
Testing for Linear Trend of Eigenvalues
Summary
Chapter 4: Methods for Correlation/Covariance Matrices as the Input Data
Factor Analysis
Structural Equation Modeling
Meta-Analysis of Correlation Matrices
Summary
Chapter 5: Graphing Correlation Matrices
Graphing Correlations
Graphing Correlation Matrices
Summary
Chapter 6: The Geometry of Correlation Matrices
What Is Correlation Space?
The 3 x 3 Correlation Space
Properties of Correlation Space: The Shape and Size
Uses of Correlation Space
Example Using 3 x 3 and 4 x 4 Correlation Space
Summary
Chapter 7: Conclusion
References
Index

最近チェックした商品