Astrostatistical Challenges for the New Astronomy (Springer Series in Astrostatistics) (2013)

個数:

Astrostatistical Challenges for the New Astronomy (Springer Series in Astrostatistics) (2013)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 238 p.
  • 言語 ENG
  • 商品コード 9781489993618
  • DDC分類 519

Full Description

Astrostatistical Challenges for the New Astronomy presents a collection of monographs authored by several of the disciplines leading astrostatisticians, i.e. by researchers from the fields of statistics and astronomy-astrophysics, who work in the statistical analysis of astronomical and cosmological data. Eight of the ten monographs are enhancements of presentations given by the authors as invited or special topics in astrostatistics papers at the ISI World Statistics Congress (2011, Dublin, Ireland). The opening chapter, by the editor, was adapted from an invited seminar given at Los Alamos National Laboratory (2011) on the history and current state of the discipline; the second chapter by Thomas Loredo was adapted from his invited presentation at the Statistical Challenges in Modern Astronomy V conference (2011, Pennsylvania State University), presenting insights regarding frequentist and Bayesian methods of estimation in astrostatistical analysis. The remaining monographs are research papers discussing various topics in astrostatistics. The monographs provide the reader with an excellent overview of the current state astrostatistical research, and offer guidelines as to subjects of future research. Lead authors for each chapter respectively include Joseph M. Hilbe (Jet Propulsion Laboratory and Arizona State Univ); Thomas J. Loredo (Dept of Astronomy, Cornell Univ); Stefano Andreon (INAF-Osservatorio Astronomico di Brera, Italy); Martin Kunz ( Institute for Theoretical Physics, Univ of Geneva, Switz); Benjamin Wandel ( Institut d'Astrophysique de Paris, Univ Pierre et Marie Curie, France); Roberto Trotta (Astrophysics Group, Dept of Physics, Imperial College London, UK); Phillip Gregory (Dept of Astronomy, Univ of British Columbia, Canada); Marc Henrion (Dept of Mathematics, Imperial College, London, UK); Asis Kumar Chattopadhyay (Dept of Statistics, Univ of Calcutta, India); Marisa March (Astrophysics Group, Dept of Physics, Imperial College, London, UK).

Contents

Joseph Hilbe, Jet Propulsion Laboratory and Arizona State University, Astrostatistics: A brief history and view to the future.- Thomas Loredo, Cornell Univ, Bayesian astrostatistics: A backward look to the future.- Stefano Andreon, INAF-Osservatorio Astronomico di Brera, Italy, Understanding better (some) astronomical data using Bayesian methods.- Martin Kunz, Institute for Theoretical Physics, Univ of Geneva, BEAMS: separating the wheat from the chaff in supernova analysis.- Benjamin Wandelt, Institut d'Astrophysique de Paris, Université Pierre et Marie Curie, France, Cosmostatistics.- Roberto Trotta, Astrophysics Group, Dept of Physics, Imperial College London  (with Farhan Feroz (Cambridge), Mike Hobson (Cambridge), and Roberto Ruiz de Austri (Univ of Valencia, Spain), Recent advances in Bayesian inference in cosmology and astroparticle physics thanks to the Multinest Algorithm.- Phillip Gregory, Department of Astronomy, Univ of British Columbia, Canada, Extrasolar planets via Bayesian model fitting.- Marc Henrion, Dept of Mathematics, Imperial College, London, UK (with Daniel Mortlock (Imperial), Axel Gandy (Imperial), and David J. Hand (Imperial)), Subspace methods for anomaly detection in high dimensional astronomical databases.- Asis Kumar Chattopadhyay, Dept of Statistics, Univ of Calcutta, India (with Tanuka Chattyopadhyay, Tuli De, and Saptarshi Mondal), Independent Component Analysis for dimension reduction classification: Hough transform and CASH Algorithm.- Marisa March, Astrophysics Group, Dept of Physics, Imperial College London (with Roberto Trotta), Improved cosmological constraints from a Bayesian hierarchical model of supernova type Ia data                                                                                                                                                                                                                                                         

最近チェックした商品