AI開発者のためのアンサンブル学習<br>Ensemble Learning for AI Developers : Learn Bagging, Stacking, and Boosting Methods with Use Cases (1st)

個数:
電子版価格
¥8,933
  • 電子版あり

AI開発者のためのアンサンブル学習
Ensemble Learning for AI Developers : Learn Bagging, Stacking, and Boosting Methods with Use Cases (1st)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 136 p.
  • 商品コード 9781484259399

Full Description

Use ensemble learning techniques and models to improve your machine learning results.
Ensemble Learning for AI Developers starts you at the beginning with an historical overview and explains key ensemble techniques and why they are needed. You then will learn how to change training data using bagging, bootstrap aggregating, random forest models, and cross-validation methods. Authors Kumar and Jain provide best practices to guide you in combining models and using tools to boost performance of your machine learning projects. They teach you how to effectively implement ensemble concepts such as stacking and boosting and to utilize popular libraries such as Keras, Scikit Learn, TensorFlow, PyTorch, and Microsoft LightGBM. Tips are presented to apply ensemble learning in different data science problems, including time series data, imaging data, and NLP. Recent advances in ensemble learning are discussed. Sample code is provided in the form of scripts and the IPython notebook.
What You Will Learn

Understand the techniques and methods utilized in ensemble learning
Use bagging, stacking, and boosting to improve performance of your machine learning projects by combining models to decrease variance, improve predictions, and reduce bias
Enhance your machine learning architecture with ensemble learning

Who This Book Is For

Data scientists and machine learning engineers keen on exploring ensemble learning

Contents

Chapter 1: Why Ensemble Techniques Are Needed.- Chapter 2: Mix Training Data.- Chapter 3: Mix Models.- Chapter 4: Mix Combinations.- Chapter 5: Use Ensemble Learning Libraries.- Chapter 6: Tips and Best Practices.

最近チェックした商品