Industrial Machine Learning : Using Artificial Intelligence as a Transformational Disruptor (1st)

個数:
電子版価格
¥15,049
  • 電子版あり
  • ポイントキャンペーン

Industrial Machine Learning : Using Artificial Intelligence as a Transformational Disruptor (1st)

  • ウェブストア価格 ¥15,372(本体¥13,975)
  • APress(2019/12発売)
  • 外貨定価 US$ 79.99
  • クリスマスポイント2倍キャンペーン(~12/25)
  • ポイント 278pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 637 p.
  • 言語 ENG
  • 商品コード 9781484253151
  • DDC分類 006

Full Description

Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science.

Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes.



Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory,supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors.

What You Will Learn

Generate and identify transformational disruptors of artificial intelligence (AI)

Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment

Hone the skills required to handle the future of data engineering and data science

Who This Book Is For

Intermediate to expert level professionals in the fields of data science, data engineering, machine learning, and data management

Contents

Chapter 1: Introduction.- Chapter 2: Background Knowledge.- Chapter 3: Classic Machine Learning .- Chapter 4: Supervised Learning: Using labeled data for Insights.- Chapter 5: Supervised Learning: Advanced Algorithms.- Chapter 6: Unsupervised Learning: Using Unlabeled Data.- Chapter 7: Unsupervised Learning: Neural Network Toolkits.- Chapter 8: Unsupervised Learning: Deep Learning.- Chapter 9: Reinforcement Learning: Using Newly Gained Knowledge for Insights.- Chapter 10: Evolutionary Computing.- Chapter 11: Mechatronics.- Chapter 12: Robotics Revolution.- Chapter 13: Fourth Industrial Revolution (4IR ).- Chapter 14: Industrialized Artificial Intelligence.- Chapter 15: Final Industrialization Project.- Appendix: Reference Material.-