Applying Generalized Linear Models (Springer Texts in Statistics)

個数:

Applying Generalized Linear Models (Springer Texts in Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9781475771114
  • DDC分類 519

Full Description

Applying Generalized Linear Models describes how generalized linear modelling procedures can be used for statistical modelling in many different fields, without becoming lost in problems of statistical inference. Many students, even in relatively advanced statistics courses, do not have an overview whereby they can see that the three areas - linear normal, categorical, and survival models - have much in common. The author shows the unity of many of the commonly used models and provides the reader with a taste of many different areas, such as survival models, time series, and spatial analysis. This book should appeal to applied statisticians and to scientists with a basic grounding in modern statistics. With the many exercises included at the ends of chapters, it will be an excellent text for teaching the fundamental uses of statistical modelling. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, and should be familiar at least with the analysis of the simpler normal linear models, regression and ANOVA. The author is professor in the biostatistics department at Limburgs University, Diepenbeek, in the social science department at the University of Liège, and in medical statistics at DeMontfort University, Leicester. He is the author of nine other books.

Contents

Generalized Linear Modelling: Statistical Modelling.- Exponential Dispersion Models.- Linear Structure.- Three Components of a GLM.- Possible Models.- Inference.- Exercises. Discrete Data: Log Linear Models.- Models of Change.- Overdispersion.- Exercises. Fitting and Comparing Probability Distributions: Fitting Distributions.- Setting Up the Model.- Special Cases.- Exercises. Growth Curves: Exponential Growth Curves.- Logistic Growth Curve.- Gomperz Growth Curve.- More Complex Models.- Exercises. Time Series: Poisson Processes.- Markov Processes.- Repeated Measurements.- Exercises. Survival Data: General Concepts.- 'Nonparametric' Estimation.- Parametric Models.- 'Semiparametric' Models.- Exercises. Event Histories: Event Histories and Survival Distributions.- Counting processes.- Modelling Event Histories.- Generalizations.- Exercises. Spatial data: Spatial Interaction.- Spatial Patterns.- Exercises. Normal Models: Linear Regression.- Analysis of Variance.- Nonlinear Regression.- Exercises. Dynamic Models: Dynamic Generalized Linear Models.- Normal Models.- Count Data.- Positive Response Data.- Continuous Time Nonlinear Models. Appendices: Inference.- Diagnostics.- References.- Index.

最近チェックした商品