Knotted Surfaces and Their Diagrams (Mathematical Surveys and Monographs)

個数:

Knotted Surfaces and Their Diagrams (Mathematical Surveys and Monographs)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 258 p.
  • 言語 ENG
  • 商品コード 9781470476335

Full Description

In this book the authors develop the theory of knotted surfaces in analogy with the classical case of knotted curves in 3-dimensional space. In the first chapter knotted surface diagrams are defined and exemplified; these are generic surfaces in 3-space with crossing information given. The diagrams are further enhanced to give alternative descriptions. A knotted surface can be described as a movie, as a kind of labeled planar graph, or as a sequence of words in which successive words are related by grammatical changes.

In the second chapter, the theory of Reidemeister moves is developed in the various contexts. The authors show how to unknot intricate examples using these moves.

The third chapter reviews the braid theory of knotted surfaces. Examples of the Alexander isotopy are given, and the braid movie moves are presented.

In the fourth chapter, properties of the projections of knotted surfaces are studied. Oriented surfaces in 4-space are shown to have planar projections without cusps and without branch points. Signs of triple points are studied. Applications of triple-point smoothing that include proofs of triple-point formulas and a proof of Whitney's congruence on normal Euler classes are presented.

The fifth chapter indicates how to obtain presentations for the fundamental group and the Alexander modules. Key examples are worked in detail. The Seifert algorithm for knotted surfaces is presented and exemplified. The sixth chapter relates knotted surfaces and diagrammatic techniques to 2-categories. Solutions to the Zamolodchikov equations that are diagrammatically obtained are presented. The book contains over 200 illustrations that illuminate the text. Examples are worked out in detail, and readers have the opportunity to learn first-hand a series of remarkable geometric techniques.

Contents

Diagrams of knotted surfaces
Moving knotted surfaces
Braid theory in dimension four
Combinatorics of knotted surface diagrams
The fundamental group and the Seifert algorithm
Algebraic structures related to knotted surface diagrams
Bibliography
Index

最近チェックした商品