Real Analysis and Applications : Including Fourier Series and the Calculus of Variations

個数:

Real Analysis and Applications : Including Fourier Series and the Calculus of Variations

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 197 p.
  • 言語 ENG
  • 商品コード 9781470465018

Full Description

Real Analysis and Applications starts with a streamlined, but complete approach to real analysis. It finishes with a wide variety of applications in Fourier series and the calculus of variations, including minimal surfaces, physics, economics, Riemannian geometry, and general relativity. The basic theory includes all the standard topics: limits of sequences, topology, compactness, the Cantor set and fractals, calculus with the Riemann integral, a chapter on the Lebesgue theory, sequences of functions, infinite series, and the exponential and Gamma functions. The applications conclude with a computation of the relativistic precession of Mercury's orbit, which Einstein called ""convincing proof of the correctness of the theory [of General Relativity].""

The text not only provides clear, logical proofs, but also shows the student how to come up with them. The excellent exercises come with select solutions in the back. Here is a text which makes it possible to do the full theory and significant applications in one semester. Frank Morgan is the author of six books and over one hundred articles on mathematics. He is an inaugural recipient of the Mathematical Association of America's national Haimo award for excellence in teaching. With this applied version of his Real Analysis text, Morgan brings his famous direct style to the growing numbers of potential mathematics majors who want to see applications right along with the theory.

Contents

Part I: Real numbers and limits: Numbers and logic
Infinity
Sequences
Subsequences
Functions and limits
Composition of functions
Part II: Topology: Open and closed sets
Compactness
Existence of maximum
Uniform continuity
Connected sets and the intermediate value theorem
The Cantor set and fractals
Part III: Calculus: The derivative and the mean value theorem
The Riemann integral
The fundamental theorem of calculus
Sequences of functions
The Lebesgue theory
Infinite series $\sum_{n=1}^\infty a_n$
Absolute convergence
Power series
The exponential function
Volumes of $n$-balls and the gamma function
Part IV: Fourier series: Fourier series
Strings and springs
Convergence of Fourier series
Part V: The calculus of variations: Euler's equation
First integrals and the Brachistochrone problem
Geodesics and great circles
Variational notation, higher order equations
Harmonic functions
Minimal surfaces
Hamilton's action and Lagrange's equations
Optimal economic strategies
Utility of consumption
Riemannian geometry
Noneuclidean geometry
General relativity
Partial solutions to exercises
Greek letters
Index

最近チェックした商品