Set Theory (Ams Chelsea Publishing)

個数:

Set Theory (Ams Chelsea Publishing)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 352 p.
  • 言語 ENG
  • 商品コード 9781470464943

Full Description

In the early twentieth century, Hausdorff developed an axiomatic approach to topology, which continues to be the foundation of modern topology. The present book, the English translation of the third edition of Hausdorff's Mengenlehre, is a thorough introduction to his theory of point-set topology.

The treatment begins with topics in the foundations of mathematics, including the basics of abstract set theory, sums and products of sets, cardinal and ordinal numbers, and Hausdorff's well-ordering theorem. The exposition then specializes to point sets, where major topics such as Borel systems, first and second category, and connectedness are considered in detail. Next, mappings between spaces are introduced. This leads naturally to a discussion of topological spaces and continuous mappings between them. Finally, the theory is applied to the study of real functions and their properties.

The book does not presuppose any mathematical knowledge beyond calculus, but it does require a certain maturity in abstract reasoning; qualified college seniors and first-year graduate students should have no difficulty in making the material their own.

Contents

Sets and the Combining of Sets: 1.1 Sets
1.2 Functions
1.3 Sum and intersection
1.4 Product and power
Cardinal Numbers: 2.5 Comparison of sets
2.6 Sum, product, and power
2.7 The scale of cardinal numbers
2.8 The elementary cardinal numbers
Order Types: 3.9 Order
3.10 Sum and product
3.11 The types $\aleph_0$ and $\aleph$
Ordinal Numbers: 4.12 The well-ordering theorem
4.13 The comparability of ordinal numbers
4.14 The combining of ordinal numbers
4.15 The alefs
4.16 The general concept of product
Systems of Sets: 5.17 Rings and fields
5.18 Borel systems
5.19 Suslin sets
Point Sets: 6.20 Distance
6.21 Convergence
6.22 Interior points and border points
6.23 The $\alpha, \beta$, and $\gamma$ points
6.24 Relative and absolute concepts
6.25 Separable spaces
6.26 Complete spaces
6.27 Sets of the first and second categories
6.28 Spaces of sets
6.29 Connectedness
Point Sets and Ordinal Numbers: 7.30 Hulls and kernels
7.31 Further applications of ordinal numbers
7.32 Borel and Suslin sets
7.33 Existence proofs
7.34 Criteria for Borel sets
Mappings of Two Spaces: 8.35 Continuous mappings
8.36 Interval-images
8.37 Images of Suslin sets
8.38 Homeomorphism
8.39 Simple curves
8.40 Topological spaces
Real Functions: 9.41 Functions and inverse image sets
9.42 Functions of the first class
9.43 Baire functions
9.44 Sets of convergence
Supplement: 10.45 The Baire condition
10.46 Half-schlicht mappings
Appendixes
Bibliography
Further references
Index

最近チェックした商品