Stability of KAM Tori for Nonlinear Schrodinger Equation (Memoirs of the American Mathematical Society)

Stability of KAM Tori for Nonlinear Schrodinger Equation (Memoirs of the American Mathematical Society)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 85 p.
  • 言語 ENG
  • 商品コード 9781470416577
  • DDC分類 530.124

Full Description

The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrodinger equation $$\sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u,$$ subject to Dirichlet boundary conditions $u(t,0)=u(t,\pi)=0$, where $M_{\xi}$ is a real Fourier multiplier. More precisely, they show that, for a typical Fourier multiplier $M_{\xi}$, any solution with the initial datum in the $\delta$-neighborhood of a KAM torus still stays in the $2\delta$-neighborhood of the KAM torus for a polynomial long time such as $|t|\leq \delta^{-\mathcal{M}}$ for any given $\mathcal M$ with $0\leq \mathcal{M}\leq C(\varepsilon)$, where $C(\varepsilon)$ is a constant depending on $\varepsilon$ and $C(\varepsilon)\rightarrow\infty$ as $\varepsilon\rightarrow0$.

Contents

Introduction and main results
Some notations and the abstract results
Properties of the Hamiltonian with $p$-tame property
Proof of Theorem 2.9 and Theorem 2.10
Proof of Theorem 2.11
Proof of Theorem 1.1
Appendix: technical lemmas
Bibliography
Index

最近チェックした商品