Numerical Analysis for Statisticians (Statistics and Computing) (2ND)

個数:

Numerical Analysis for Statisticians (Statistics and Computing) (2ND)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 600 p.
  • 言語 ENG
  • 商品コード 9781461426127
  • DDC分類 005

Full Description

Every advance in computer architecture and software tempts statisticians to tackle numerically harder problems. To do so intelligently requires a good working knowledge of numerical analysis. This book equips students to craft their own software and to understand the advantages and disadvantages of different numerical methods. Issues of numerical stability, accurate approximation, computational complexity, and mathematical modeling share the limelight in a broad yet rigorous overview of those parts of numerical analysis most relevant to statisticians.
In this second edition, the material on optimization has been completely rewritten. There is now an entire chapter on the MM algorithm in addition to more comprehensive treatments of constrained optimization, penalty and barrier methods, and model selection via the lasso. There is also new material on the Cholesky decomposition, Gram-Schmidt orthogonalization, the QR decomposition, the singular value decomposition, and reproducing kernel Hilbert spaces. The discussions of the bootstrap, permutation testing, independent Monte Carlo, and hidden Markov chains are updated, and a new chapter on advanced MCMC topics introduces students to Markov random fields, reversible jump MCMC, and convergence analysis in Gibbs
sampling.
Numerical Analysis for Statisticians can serve as a graduate text for a course surveying computational statistics. With a careful selection of topics and appropriate supplementation, it can be used at the undergraduate level. It contains enough material for a graduate course on optimization theory. Because many chapters are nearly self-contained, professional statisticians will also find the book useful as a reference.

Contents

Recurrence Relations.- Power Series Expansions.- Continued Fraction Expansions.- Asymptotic Expansions.- Solution of Nonlinear Equations.- Vector and Matrix Norms.- Linear Regression and Matrix Inversion.- Eigenvalues and Eigenvectors.- Singular Value Decomposition.- Splines.- Optimization Theory.- The MM Algorithm.- The EM Algorithm.- Newton's Method and Scoring.- Local and Global Convergence.- Advanced Optimization Topics.- Concrete Hilbert Spaces.- Quadrature Methods.- The Fourier Transform.- The Finite Fourier Transform.- Wavelets.- Generating Random Deviates.- Independent Monte Carlo.- Permutation Tests and the Bootstrap.- Finite-State Markov Chains.- Markov Chain Monte Carlo.- Advanced Topics in MCMC.

最近チェックした商品