Basic Principles of Structural Equation Modeling : An Introduction to Lisrel and Eqs (Springer Texts in Statistics) (Reprint)

個数:

Basic Principles of Structural Equation Modeling : An Introduction to Lisrel and Eqs (Springer Texts in Statistics) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 296 p.
  • 言語 ENG
  • 商品コード 9781461284550
  • DDC分類 519

Full Description

During the last two decades, structural equation modeling (SEM) has emerged as a powerful multivariate data analysis tool in social science research settings, especially in the fields of sociology, psychology, and education. Although its roots can be traced back to the first half of this century, when Spearman (1904) developed factor analysis and Wright (1934) introduced path analysis, it was not until the 1970s that the works by Karl Joreskog and his associates (e. g. , Joreskog, 1977; Joreskog and Van Thillo, 1973) began to make general SEM techniques accessible to the social and behavioral science research communities. Today, with the development and increasing avail­ ability of SEM computer programs, SEM has become a well-established and respected data analysis method, incorporating many of the traditional analysis techniques as special cases. State-of-the-art SEM software packages such as LISREL (Joreskog and Sorbom, 1993a,b) and EQS (Bentler, 1993; Bentler and Wu, 1993) handle a variety of ordinary least squares regression designs as well as complex structural equation models involving variables with arbitrary distributions. Unfortunately, many students and researchers hesitate to use SEM methods, perhaps due to the somewhat complex underlying statistical repre­ sentation and theory. In my opinion, social science students and researchers can benefit greatly from acquiring knowledge and skills in SEM since the methods-applied appropriately-can provide a bridge between the theo­ retical and empirical aspects of behavioral research.

Contents

1 Linear Regression and Classical Path Analysis.- Overview and Key Points.- Linear Ordinary Least Squares Regression.- Classical Path Analysis.- Summary.- Exercises.- Recommended Readings.- 2 Confirmatory Factor Analysis.- Overview and Key Points.- Specification and Identification of a CFA Model.- Data-Model Fit.- Model Modification.- Validity and Reliability from a CFA Perspective.- Summary.- Exercises.- Recommended Readings.- 3 General Structural Equation Modeling.- Overview and Key Points.- Specification and Identification of a General Structural Equation Model.- The Direct, Indirect, and Total Structural Effect Components.- Parameter Estimation.- The Structural Equation Modeling Process: An Illustrated Review and Summary.- Conclusion.- Exercises.- Recommended Readings.- Appendix A.- The SIMPLIS Command Language.- Overview and Key Points.- Appendix B.- Location, Dispersion, and Association.- Overview and Key Points.- Statistical Expectation.- A Measure of a Distribution's Location.- A Measure of a Distribution's Dispersion.- A Measure of Association Between Two Variables.- Statistical Standardization.- Standardized Variables.- A Standardized Measure of Association Between Two Variables.- Recommended Readings.- Appendix C.- Matrix Algebra.- Overview and Key Points.- Some Basic Definitions.- Algebra with Matrices.- The Variance/Covariance Matrix.- Recommended Readings.- Appendix D.- Descriptive Statistics for the SES Analysis.- Appendix E.- References.

最近チェックした商品