Isomorphisms of Types : from ?-calculus to information retrieval and language design (Progress in Theoretical Computer Science)

個数:

Isomorphisms of Types : from ?-calculus to information retrieval and language design (Progress in Theoretical Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 235 p.
  • 言語 ENG
  • 商品コード 9781461275855
  • DDC分類 004

Full Description

This is a book about isomorphisms 0/ types, arecent difficult research topic in type theory that turned out to be able to have valuable practical applications both for programming language design and far more human­ centered information retrieval in software libraries. By means of a deep study of the syntax of the now widely known typed A-ca1culus, it is possible to identify some simple equations between types that on one hand allow to improve the design of the ML language, and on the other hand provide the basis for building radically new information retrieval systems for functional software libraries. We present in this book both the theoretical aspects of these researches and a fully functional implementation of some of their applications in such a way to provide interesting material both for the theoretician looking for proofs and for the practitioner interested in implementation details. In order to make it possible for these different types of readers to use this book effectively, some special signs are used to designate material that is particularly technical or applied or that represents a digression. When the symbol appears at the beginning of a section or a subsection, it warns that the material contained in such section is particularly technical with respect to the general level of the chapter or section where it is located. This material is generally reserved to theoreticians and does not need to be read by the casual reader.

Contents

1 Introduction.- 1.1 What is a type?.- 1.2 Types in mathematical logic.- 1.3 Types for programming.- 1.4 Exploring typed ?-calculi.- 1.5 The typed ? -calculi used in this work.- 1.6 The Curry-Howard Isomorphism.- 1.7 Using types to classify and retrieve software.- 1.8 When are two types equal?.- 1.9 Isomorphisms and the lambda calculus.- 2 Confluence Results.- 2.1 Introduction.- 2.2 Extensionality.- 2.3 Overview.- 2.4 Confluence.- 2.5 Weak normalization.- 2.6 Decidability and conservative extension results.- 2.7 Other related works.- 3 Strong normalization results.- 3.1 Normalization without ?2 on gentop n.f.'s.- 3.2 Normalization without ?top and SPtop.- 4 First-Order Isomorphic Types.- 4.1 Rewriting types.- 4.2 From ?1???? to the classical ?1??.- 4.3 Using finite hereditary permutations.- 4.4 The complete theories of ?1??? and ?1???.- 5 Second-Order Isomorphic Types.- 5.1 Towards completeness.- 5.2 Characterizing canonical terms.- 5.3 Completeness for isomorphisms.- 5.4 Decidability of the equational theory.- 5.5 The complete theories of ?2??? and ?2???.- A Properties of n-tuples.- B Technical lemmas.- C Miscellanea.- 6 Isomorphisms for ML.- 6.1 Introduction.- 6.2 Isomorphisms of types in ML-style languages.- 6.3 Completeness and conservativity results.- 6.4 Deciding ML isomorphism.- 6.5 Adding isomorphisms to the ML type-checker.- 6.6 Conclusion.- 6.7 Some technical Lemmas.- 6.8 Completeness.- 6.9 Conservativity.- 7 Related Works, Future Perspectives.- 7.1 Equational matching of types.- 7.2 Using equational unification.- 7.3 Extending the paradigm.- 7.4 Future work and perspectives.- Citation Index.

最近チェックした商品