Models for Discrete Longitudinal Data (Springer Series in Statistics)

個数:

Models for Discrete Longitudinal Data (Springer Series in Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 712 p.
  • 言語 ENG
  • 商品コード 9781441920430
  • DDC分類 515

Full Description

The linear mixed model has become the main parametric tool for the analysis of continuous longitudinal data, as the authors discussed in their 2000 book. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The authors received the American Statistical Association's Excellence in Continuing Education Award based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.

Contents

Motivating Studies.- Generalized Linear Models.- Linear Mixed Models for Gaussian Longitudinal Data.- Model Families.- The Strength of Marginal Models.- Likelihood-based Marginal Models.- Generalized Estimating Equations.- Pseudo-Likelihood.- Fitting Marginal Models with SAS.- Conditional Models.- Pseudo-Likehood.- From Subject-specific to Random-effects Models.- The Generalized Linear Mixed Model (GLMM).- Fitting Generalized Linear Mixed Models with SAS.- Marginal versus Random-effects Models.- The Analgesic Trial.- Ordinal Data.- The Epilepsy Data.- Non-linear Models.- Pseudo-Likelihood for a Hierarchical Model.- Random-effects Models with Serial Correlation.- Non-Gaussian Random Effects.- Joint Continuous and Discrete Responses.- High-dimensional Joint Models.- Missing Data Concepts.- Simple Methods, Direct Likelihood, and Weighted Generalized Estimating Equations.- Multiple Imputation and the Expectation-Maximization Algorithm.- Selection Models.- Pattern-mixture Models.- Sensitivity Analysis.- Incomplete Data and SAS.

最近チェックした商品