ベイズ法:社会・行動科学アプローチ(第3版)<br>Bayesian Methods : A Social and Behavioral Sciences Approach, Third Edition (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences) (3RD)

個数:

ベイズ法:社会・行動科学アプローチ(第3版)
Bayesian Methods : A Social and Behavioral Sciences Approach, Third Edition (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences) (3RD)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 722 p.
  • 言語 ENG
  • 商品コード 9781439862483
  • DDC分類 519.542

Full Description

An Update of the Most Popular Graduate-Level Introductions to Bayesian Statistics for Social Scientists

Now that Bayesian modeling has become standard, MCMC is well understood and trusted, and computing power continues to increase, Bayesian Methods: A Social and Behavioral Sciences Approach, Third Edition focuses more on implementation details of the procedures and less on justifying procedures. The expanded examples reflect this updated approach.

New to the Third Edition




A chapter on Bayesian decision theory, covering Bayesian and frequentist decision theory as well as the connection of empirical Bayes with James-Stein estimation
A chapter on the practical implementation of MCMC methods using the BUGS software
Greatly expanded chapter on hierarchical models that shows how this area is well suited to the Bayesian paradigm
Many new applications from a variety of social science disciplines
Double the number of exercises, with 20 now in each chapter
Updated BaM package in R, including new datasets, code, and procedures for calling BUGS packages from R

This bestselling, highly praised text continues to be suitable for a range of courses, including an introductory course or a computing-centered course. It shows students in the social and behavioral sciences how to use Bayesian methods in practice, preparing them for sophisticated, real-world work in the field.

Contents

Background and Introduction. Specifying Bayesian Models. The Normal and Student's-t Models. The Bayesian Linear Model. The Bayesian Prior. Assessing Model Quality. Bayesian Hypothesis Testing and the Bayes' Factor. Bayesian Decision Theory. Monte Carlo and Related Iterative Methods. Basics of Markov Chain Monte Carlo. Implementing Bayesian Models with Markov Chain Monte Carlo. Bayesian Hierarchical Models. Some Markov Chain Monte Carlo Theory. Utilitarian Markov Chain Monte Carlo. Advanced Markov Chain Monte Carlo. Appendices. References. Indices.

最近チェックした商品