Tiny Machine Learning: Design Principles and Applications

個数:
電子版価格
¥18,761
  • 予約
  • 電子版あり

Tiny Machine Learning: Design Principles and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 784 p.
  • 言語 ENG
  • 商品コード 9781394294541
  • DDC分類 006.31

Full Description

An expert compilation of on-device training techniques, regulatory frameworks, and ethical considerations of TinyML design and development

In Tiny Machine Learning: Design Principles and Applications, a team of distinguished researchers delivers a comprehensive discussion of the critical concepts, design principles, applications, and relevant issues in Tiny Machine Learning (TinyML). Expert contributors introduce a new low power resource, offering vast applications in IoT devices with system-algorithm co-design.

Tiny Machine Learning explores TinyML paradigms and enablers, TinyML for anomaly detection, and the learning panorama under TinyML. Readers will find explanations of TinyML devices and tools, power consumption and memory in IoT microcontrollers, and lightweight frameworks for TinyML. The book also describes TinyML techniques for real-time and environmental applications.

Additional topics covered in the book include:

A thorough introduction to security and privacy techniques for TinyML devices, including the implementation of novel security schemes
Incisive explorations of power consumption and memory in IoT MCUs, including ultralow-power smart IoT devices with embedded TinyML
Practical discussions of TinyML research targeting microcontrollers for data extraction and synthesis

Perfect for industry and academic researchers, scientists, and engineers, Tiny Machine Learning will also benefit lecturers and graduate students interested in machine learning.

Contents

Chapter 1  Introduction to TinyML

Francisca Onyiyechi Nwokoma, Chidi Ukamaka Betrand, Juliet Nnenna Odii, Euphemia Chioma Nwokorie, and Euphemia Chioma Nwokorie

Chapter 2  Learning Panorama Under TinyML

Ikechukwu Ignatius Ayogu, Euphemia Chioma Nwokorie, Juliet Nnenna Odii, Francisca Onyiyechi Nwokoma, and Chidi Ukamaka Betrand

Chapter 3 TinyML for Anomaly Detection

Richard Govada Joshua, Peter Anuoluwapo Gbadega, Agbotiname Lucky Imoize, and Samuel Oluwatobi Tofade

Chapter 4 TinyML Power Consumption and Memory in IoT MCUs

Peter Anuoluwapo Gbadega, Agbotiname Lucky Imoize, Richard Govada Joshua, and Samuel Oluwatobi Tofade

Chapter 5 Efficient Data Cleaning and Anomaly Detection in IoT Devices Using TinyCleanEDF

Ilker Kara

Chapter 6 TinyML devices and tools

Abeeb Akorede Bello, Agbotiname Lucky Imoize, and Agbotiname Lucky Imoize

Chapter 7 Privacy-Preserving Techniques in TinyML for IoT

Oleksandr Kuznetsov, Emanuele Frontoni, Kateryna Kuznetsova, Marco Arnesano, and Pavlo Usik

Chapter 8 Enhancing Cybersecurity in TinyML with Lightweight Cryptographic Algorithms

Oleksandr Kuznetsov, Roman Minailenko, and Aigul Shaikhanova

Chapter 9 Tiny Machine Learning for Enhanced Edge Intelligence

Emmanuel Alozie, Agbotiname Lucky Imoize, Hawau I. Olagunju, Nasir Faruk, Salisu Garba, and Ayobami P. Olatunji

最近チェックした商品