Nano-Bioremediation for Wastewater Treatment

個数:
電子版価格
¥24,135
  • 電子版あり

Nano-Bioremediation for Wastewater Treatment

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 384 p.
  • 言語 ENG
  • 商品コード 9781394271610
  • DDC分類 628.35

Full Description

Invest in Nano-Bioremediation for Wastewater Treatment to explore cutting-edge techniques that combine nanotechnology and bioremediation, equipping you with innovative solutions and expert insights needed to tackle global environmental pollution challenges effectively.

The coupling of nanotechnology and bioremediation techniques holds great promise for addressing environmental pollution and contamination on a global scale. The process of bioremediation uses living organisms, such as bacteria, fungi, or plants, to degrade or detoxify pollutants in the environment. Nanotechnology involves manipulating materials at the nanoscale, typically at the scale of individual atoms and molecules, to create novel properties and functionalities. Today, research is focused on exploring the combined potential of nanomaterials and bioremediation for treating pollutants.

Nano-Bioremediation for Wastewater Treatment will serve as a premier guide for nanotechnology in this field, providing information regarding the various challenges that arise from the coupling of nanotechnology and bioremediation techniques. Since very limited literature is available on this subject, the editors have compiled all the current assays and techniques that provide insights into this topic. This book will also cover different fabrication methods and methods for decorating microbial cells on the surface of nanomaterials, which is a key factor for synthesizing microbial conjugation, as well as prototype designing and integrating developed materials into water purification systems. Unlock the potential of cutting-edge nano-bioremediation techniques for wastewater treatment, with practical applications, expert insights, and sustainable solutions that set you apart in the field.

Audience

Environmental engineers, chemists, biotechnologists, microbiologists, nanotechnologists, environmental consultants, researchers, academics, and policymakers focused on developing and implementing innovative solutions for wastewater treatment and environmental remediation.

Contents

Preface xv

1 Nano-Bioremediation and Scale-Up Techniques for Wastewater Treatment 1
Ananya Tiwari, Isha Dharsandia, Dharni Parekh, Alok Pandya, Narendra Kumar, Shubhita Tripathi and Gajendra Singh Vishwakarma

1.1 Introduction 2

1.2 Basics of Nanobioremediation 4

1.3 Basics of Wastewater Treatment Plant 4

1.3.1 Treatment Methods 5

1.3.1.1 Primary Treatment 6

1.3.1.2 Secondary Treatment 6

1.3.1.3 Disinfection-Filtration Treatment 6

1.3.1.4 Sludge Treatment 7

1.4 Secondary Treatment Systems 7

1.4.1 Types of Secondary Treatment 8

1.4.1.1 Aerobic and Activated Sludge Treatment 8

1.4.1.2 Anaerobic Treatment 9

1.4.1.3 Anoxic Treatment 10

1.5 Different Matrix for the Microbes and Nano-Conjugate Fabrication 10

1.5.1 Conjugation Criteria for Nanoparticles 12

1.5.2 Conjugation Criteria for Microbes 12

1.6 Factors of Scale-Up of Water Treatment Plant 13

1.6.1 Reverse Osmosis (RO) 13

1.6.1.1 Overview of Nanofiltration Membranes 14

1.6.2 Techniques for Fabricating Nanofiltration Membranes 14

1.6.3 Microfiltration Membrane 15

1.6.3.1 Ceramic Membranes 15

1.6.3.2 Polymeric Membrane 16

1.7 Existing Studies on Scale-Up Techniques and Design Principles 16

1.8 Cost Reduction, Energy Efficiency, and Improved Performance 20

1.9 Conclusions 22

References 22

2 Nanomaterials and Microbial Compatibility: Synergistic and Antagonistic Mechanisms 35
Sajith Sathyamoorthy, Aswathy Venugopal, Lenin M. J., Shreya Tirkey and Murugan Sevanan

2.1 Introduction 36

2.1.1 Overview of Nanomaterials 36

2.1.2 Understanding Microbial Compatibility and Effective Utilization in Wastewater Treatment 38

2.1.3 Nano-Adsorbents 40

2.1.4 Nano-Catalysts 40

2.1.5 Nano-Membranes 41

2.2 Mechanisms of Microbial Interaction with Nanomaterials 42

2.2.1 Mechanism of Action 42

2.2.2 Responses of Bacteria-Nanomaterial Interactions 45

2.2.3 Responses of Fungus-Nanomaterial Interactions 46

2.3 Synergistic Effects of Nanomaterials on Microbial Activities 46

2.3.1 Utilizing Microbes and Nanoparticles for the Transformation of Waste Into Value-Added Products 47

2.3.2 Enhancement of Microbial Growth or Metabolic Activities 49

2.4 Antagonistic Responses: Microbial Tolerance and Resistance 51

2.4.1 Mechanisms Employed by Microbes to Tolerate Nanomaterial Exposure 51

2.4.2 Development of Microbial Resistance to Specific Nanomaterials 52

2.4.3 Implications for Antimicrobial Resistance and Environmental Persistence 53

2.5 Impact on Microbial Communities and Ecosystems 55

2.5.1 Nanomaterial Exposure and Its Impact on Microbial Diversity 55

2.5.1.1 Effects of NPs in Aquatic Microbial Community 55

2.5.1.2 Effects of NPs on Soil Microbial Community 57

2.5.2 Effect of Nanomaterials on Microbial Community Structure and Diversity 58

2.5.2.1 Application of Nanoparticles in Wastewater Treatment 59

2.5.2.2 Dendrimer in Water Treatment 61

2.6 Metal Nanoparticles in Water Treatment 62

2.6.1 Zeolite in Water Treatment 63

2.6.2 Carbonaceous Nanoparticle in Water Treatment 63

2.7 Future Prospects 63

2.8 Discussion and Conclusion 64

References 66

3 Physical and Chemical Characterization of Microbes and Nanoconjugates 73
Dhruvesh Maiya and Tvarit Patel

3.1 Introduction to Nano-Bioremediation 74

3.2 Physical and Chemical Properties of Microbes and Nanoconjugates 75

3.3 Microscopic Structural Analysis 76

3.3.1 Scanning Electron Microscopy Technique (SEM) 77

3.3.2 Transmission Electron Microscopy 81

3.3.3 Atomic Force Microscopy 83

3.4 Spectroscopic Chemical Analysis 86

3.4.1 Fourier Transform Infrared Spectroscopy 86

3.4.2 X-Ray Photoelectron Spectroscopy 87

3.4.3 UV-Vis Spectroscopy 88

3.5 Characterization Techniques and Their Role in Nano-Bioremediation 90

3.6 Conclusion 99

References 100

4 Microbes and Nanoconjugate-Assisted Removal of Heavy Metals from Water Resources 107
Bhargav Raval, Nishra Joshi, Riddhi M. Kathrotiya, Shivani Yagnik Raval and Vikram Hiren Raval

4.1 Introduction 108

4.2 Effects on Human Health and Environment 109

4.3 Physicochemical Methods for Metal Remediation 113

4.3.1 Ion Exchange 113

4.3.2 Precipitation 113

4.3.3 Reverse Osmosis 114

4.3.4 Filtration 114

4.3.5 Chemical Oxidation 114

4.3.6 Chemical Leaching 114

4.3.7 Electrochemical Treatment 114

4.4 Bioremediation: A Solution to Pollution 115

4.5 Mechanisms of Bioremediation 117

4.5.1 Biosorption/Bioadsorption 117

4.5.2 Bioaccumulation 118

4.5.3 Bioprecipitation 118

4.5.4 Bioleaching 119

4.6 Utilization of Nanoconjugates in Heavy Metal Remediation 121

4.6.1 Properties of Nanoparticles 122

4.6.2 Synthesis of Nanoparticles 123

4.6.2.1 Synthesis of Nanoparticles by Bacteria 124

4.6.2.2 Synthesis of Nanoparticles by Fungi and Yeast 125

4.6.2.3 Synthesis of Nanoparticles by Algae 126

4.6.2.4 Synthesis of Nanoparticles by Plants 126

4.6.3 Application of Nanotechnology in the Bioremediation of Heavy Metals and Metalloids 127

4.7 Future Aspects 132

4.8 Conclusion 133

References 133

5 New Dimensions and Innovations in Microbes and Nanoconjugate-Based Bioremediation Technology 147
Priya Vithalani, Priti Mahla, Jahnvi Padhiar, Uday Bhanushali and Nikhil Bhatt

5.1 Introduction 148

5.2 Organic Pollutants Exposure to the Environment and Its Consequences 149

5.3 Microorganisms Mediated Remediation of Organic Pollutants 151

5.4 Advancement in Biodegradation Approach 153

5.4.1 Genetic Engineering of Microorganisms 153

5.4.2 Omics Technologies 155

5.5 Nanobioremediation Approach for Organic Pollutants 157

5.6 Microbes-Nanoconjugates Combined Approach for Remediation 159

5.7 Conclusion and Future Aspects 162

References 163

6 Application of Microbes and Nanoconjugates in the Removal of Inorganic Pollutants from Wastewater 171
Jahnvi Padhiar, Uday Bhanushali, Priya Vithalani, Priti Mahla and Nikhil Bhatt

6.1 Introduction 172

6.2 Inorganic Pollutants 172

6.2.1 Types of Inorganic Pollutants 173

6.2.2 Environment and Health Risk 173

6.3 Microbes as Remediators 174

6.3.1 Biosorption 176

6.3.2 Bioaugmentation 176

6.3.3 Biotransformation 177

6.4 Nanoconjugates 178

6.4.1 Types of Nanoconjugates 178

6.4.2 Nanoconjugates in Removing Inorganic Pollutants 179

6.5 Synergistic Approach of Microbes and Nanoconjugates for Removing Inorganic Pollutants 180

6.6 Future Trends 181

6.7 Conclusion 181

References 181

7 Degradation of Dyes and Organic Pollutants via Microbes and Nanoconjugates from Textile Wastewater 189
Shaveta Singh, Isha Sharma, Prasant Arya and Pankaj Kumar

7.1 Introduction 190

7.2 Textile Waste and Its Harmful Impact 191

7.2.1 Synthetic Dyes 191

7.2.2 Organic Pollutants 192

7.3 Microbes for Bioremediation of Textile Wastewater 193

7.3.1 Bioremediation of Textile Wastewater by Bacteria 194

7.3.2 Bioremediation of Textile Wastewater by Fungi 194

7.4 Role of Nanotechnology in Bioremediation of Textile Wastewater 195

7.4.1 Microbial-Based Nanoconjugates Bioremediation of Textile Wastewater 195

7.4.2 Mechanism of Microbial-Based Nanoconjugates in Bioremediation of Textile Wastewater 197

7.4.3 Application of Microbial-Based Nanoconjugates in Bioremediation of Textile Wastewater 197

7.5 Conclusion 198

7.6 Future Perspectives 199

References 199

8 Microbes and Nanoconjugated Assistants for Sensing and Detecting Pollutants in Wastewater 203
Keyur Bhatt, Jaymin Parikh, Krunal Modi and Brij Mohan

8.1 Introduction 204

8.2 Molecular Sensors 206

8.3 Nanosensors 208

8.4 Environmental Applications 211

8.5 Summary and Outlook 215

References 217

9 Nanobioremediation: A Sustainable Reclamation Method for Future Deployment 221
Sanjeeb Kumar Mandal, Alekhya Pasumarthy, Dhruv Tadikonda, Bishwambhar Mishra, B. Sumithra, Sumithra Salla, Mahaboob Basha D. and Ashoutosh Panday

9.1 Introduction 222

9.1.1 How does Nanobioremediation Differ from Traditional Bioremediation Methods? 224

9.1.2 Why is Nanobioremediation Considered to be a Sustainable Reclamation Method? 225

9.1.3 Potential Applications of Nanobioremediation 226

9.1.4 Future Outlook for Nanobioremediation 227

9.2 Types of Nanomaterials Used in Nanobioremediation 229

9.2.1 Metallic Nanoparticles 229

9.2.2 Carbon-Based Nanomaterials 230

9.2.3 Metal Oxide Nanoparticles 231

9.2.4 Other Nanomaterials 234

9.3 Mechanisms of Nanobioremediation 235

9.3.1 Biosorption 235

9.3.2 Biocatalysis 236

9.3.3 Biotransformation 236

9.3.4 Biomineralization 237

9.4 Factors Affecting the Effectiveness of Nanobioremediation 238

9.4.1 Type of Nanomaterial 238

9.4.2 Properties of the Nanomaterial 238

9.4.3 Concentration of the Nanomaterial 239

9.4.4 Presence of Other Contaminants 239

9.4.5 Environmental Conditions 239

9.5 Case Studies of Nanobioremediation 240

9.5.1 Remediation of Heavy Metals 240

9.5.2 Remediation of Organic Pollutants 240

9.5.3 Remediation of Radioactive Contaminants 240

9.6 Challenges and Future Directions in Nanobioremediation 241

9.6.1 Toxicity of Nanomaterials 241

9.6.2 Environmental Fate of Nanomaterials 241

9.6.3 Public Perception of Nanomaterials 241

9.6.4 Development of New Nanomaterials for Nanobioremediation 241

9.6.5 Optimization of Nanobioremediation Processes 242

9.7 Conclusion 242

References 243

10 Nanoparticle-Assisted Microbial Removal of Arsenic (As) from Drinking Water Sources 249
Mayuri Bhagawati, Badal Kr Datta, Rajib Newar, Sukanya Sonowal, Kabyashree Buragohain, Dulumoni Tamuly and Ratul Nath

10.1 Introduction 250

10.2 Microbe-Based Removal of Arsenic 256

10.2.1 Oxidation-Reduction of Arsenic 258

10.2.2 Methylation 259

10.3 Nanoparticles and Microbial-Synthesized Nanoparticles (MSNs) 260

10.3.1 What is the Need for MSNs? 262

10.3.2 Synthesis Mechanisms of MSNs 264

10.3.3 Synergistic Approaches 267

10.3.4 Comparison Between Conventional Nanoparticles and Microbial-Synthesized Nanoparticles 268

10.4 Future Perspectives 269

10.4.1 Oxidation 270

10.4.2 Coagulation-Flocculation 270

10.4.3 Membrane Techniques 271

10.4.4 Adsorption and Ion-Exchange 271

10.4.5 Phytoremediation 272

10.4.6 Community-Scale Treatment Plants 273

10.4.7 Household Scale 273

10.5 Conclusion 274

Acknowledgement 275

References 275

11 Nanotechnology-Enabled Remediation of Oil Contamination in Polluted Water 291
Payal Patel, Ajay Patel, Manisha Parmar, Aditee Pandya and Haren Gosai

11.1 Introduction 292

11.2 Nanotechnology for Bioremediation 294

11.2.1 Uses of Nanoparticles and Nanomaterials 295

11.2.2 Bioremediation of Pollutants 296

11.2.3 Wastewater Treatment 296

11.2.4 Air Purification 297

11.2.5 Soil Bioremediation 297

11.3 Applications of Nanotechnology for Oil-Water Separation 298

11.3.1 Graphene Nanocomposites 300

11.3.2 Nanocellulose Composites 303

11.3.3 Magnetic Nanocomposites 303

11.3.4 Nanoparticles 304

11.4 Approaches for Conventional Oil-Water Separation 305

11.4.1 Sponges and Foams 306

11.4.2 Aerogels 306

11.4.3 Clays 306

11.4.4 Meshes 307

11.4.5 Textiles 308

11.5 Drawbacks and Limitations of Nanotechnology-Based Techniques 309

11.6 Conclusion 311

References 311

12 Nano-Biocatalysis for Remediation of Pharmaceutical Micropollutants in Industrial Wastewaters 321
Darshankumar Prajapati, Ashish Bhatt, Ravi Kachhadiya, Shreya Pandya and Akshaya Gupte

12.1 Introduction 322

12.2 Water Pollution and Sources of Micropollutants 324

12.2.1 Micropollutants in Hospital Discharges 328

12.2.2 Micropollutants in Domestic Discharges 329

12.2.3 Micropollutants in Agricultural Discharges 329

12.2.4 Micropollutants in Industrial Discharges 330

12.3 Impact of Micropollutants on Environment and Human Health 330

12.4 Nano-Biotechnology and Its Role in Bioremediation 333

12.5 Bioremediation of Micropollutants Using Nano-Biocatalysis 336

12.5.1 Magnetic Nanoparticles-Based Nano-Biocatalysis 339

12.5.2 Porous, Metal, and Ceramic Nanoparticles Matrix-Based Nano-Biocatalysis 340

12.5.3 Carbon Nanoparticles Matrix-Based Nano-Biocatalysis 341

12.6 Conclusion and Future Prospects 342

References 342

Index 355

最近チェックした商品