Field Effect Transistors

個数:
電子版価格
¥30,575
  • 電子版あり

Field Effect Transistors

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 528 p.
  • 言語 ENG
  • 商品コード 9781394248476
  • DDC分類 621.3815284

Full Description

Field Effect Transistors is an essential read for anyone interested in the future of electronics, as it provides a comprehensive yet accessible exploration of innovative semiconductor devices and their applications, making it a perfect resource for both beginners and seasoned professionals in the field.

Miniaturization has become the slogan of the electronics industry. Field Effect Transistors serves as a short encyclopedia for young minds looking for solutions in the miniaturization of semiconductor devices. It explores the characteristics, novel materials used, modifications in device structure, and advancements in model FET devices. Though many devices following Moore's Law have been proposed and designed, a complete history of the existing and proposed semiconductor devices is not available. This book focuses on developments and research in emerging semiconductor FET devices and their applications, providing unique coverage of topics covering recent advancements and novel concepts in the field of miniaturized semiconductor devices. Field Effect Transistors is an easy-to-understand guide, making it excellent for those who are new to the subject, giving insight and analysis of recent developments and developed semiconductor device structures along with their applications.

Contents

Preface xix

1 Classical MOSFET Evolution: Foundations and Advantages 1
S. Amir Ghoreishi and Samira Pahlavani

1.1 Introduction of Classical MOSFET 1

1.2 Dual-Gate MOSFET 3

1.3 Gate-All-Around MOSFET 7

1.4 ID -VG and ID -VG Characteristics of Conventional MOSFETs 8

1.5 Capacitance Characteristics of Conventional MOSFETs 12

1.6 Frequency-Dependent Behavior 15

1.7 Conclusion 18

References 19

2 Marvels of Modern Semiconductor Field-Effect Transistors 23
S. Amir Ghoreishi, Mohsen Mahmoudysepehr and Zeinab Ramezani

2.1 Introduction 23

2.2 Tunnel Field-Effect Transistor 25

2.3 Junctionless Transistors 27

2.4 GAA-FETs the Origin of Nanowire FETs and Nanosheet FETs 31

2.5 Significance in Modern Electronics 32

2.6 Main Electrical Characteristics of GAA-FETs 33

2.7 GAA-FET Classification 35

2.8 Nanowire Field-Effect Transistors (NW-FETs) 36

2.9 Nanosheet Field-Effect Transistors (NS-FETs) 37

2.10 Electrical Characteristics 38

2.11 Conclusion 40

References 42

3 Introduction to Modern FET Technologies 45
A. Babu Karuppiah and R. Rajaraja

3.1 Introduction 45

3.2 FinFETs (Fin Field-Effect Transistors) 46

3.3 Unveiling Multi-Gate MOSFETs: A Symphony of Efficiency 47

3.4 Unveiling Nanoscale MOSFETs: The Miniaturization Marvel 49

3.5 High-Electron Mobility Transistors (HEMTs): A Leap into the Future of FET Technology 50

3.6 Graphene Field-Effect Transistors (GFETs): Pioneering the Future of FET Technology 51

3.7 Tunnel Field-Effect Transistors (TFETs): Navigating the Quantum Realm of Future Electronics 53

3.8 Silicon Carbide (SiC) MOSFETs: Transforming Power Electronics for a Greener Future 54

3.9 Power MOSFETs: Empowering the Future of High-Efficiency Power Electronics 55

3.10 Gallium Nitride (GaN) High-Electron Mobility Transistors (HEMTs): Unleashing the Power of Wide Bandgap Semiconductors 56

3.11 Organic Field-Effect Transistors (OFETs): Bridging the Gap to Flexible and Sustainable Electronics 58

3.12 Conclusion 59

Bibliography 60

4 Scaling of Field-Effect Transistors 63
L. Vinoth Kumar, G. Pradeep Kumar and B. Karthikeyan

4.1 Introduction 63

4.2 Short-Channel Effect 65

4.3 FinFET Overview 67

4.4 GAAFET Overview 69

4.5 Conclusions 71

References 71

5 Future Prospective Beyond CMOS Technology Design 73
P. Suveetha Dhanaselvam, B. Karthikeyan and P. Anand

5.1 Introduction 73

5.2 Spintronics 74

5.3 Carbon Nanotube Transistors 75

5.4 Memristor 77

5.4.1 Working Principle 77

5.5 Applications 78

5.6 Quantum Dots 78

References 79

6 Nanowire Transistors 81
P. Suveetha Dhanaselvam, B. Karthikeyan, S. Nagarajan and B. Padmanaban

6.1 Introduction 81

6.2 Nanowire FETs 83

6.3 Organic Nanowire Transistors 89

6.4 Conclusion 90

References 90

7 Advancement of Nanotechnology and NP-Based Biosensors 93
P. Anand and B. Muneeswari

7.1 Introduction 93

7.2 Metal Oxide-Based Biosensors 95

7.3 Zinc Oxide-Based Biosensor 96

7.4 AuNP-Based Biosensors 98

7.5 GR-Based Biosensors 101

References 102

8 Technology Behind Junctionless Semiconductor Devices 105
Pavani Kollamudi and Srinivasa Rao Karumuri

8.1 Introduction 106

8.2 Operating Modes Based on the Structure of the Device 112

8.3 TCAD Simulations 116

8.4 Effect of Temperature 119

8.5 Results and Discussions 120

8.6 Conclusion 123

References 123

9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor Transistors Reinventing Semiconductor Technology 125
G. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar and V. Kumar

9.1 Introduction 125

9.2 Junctionless MOS Transistors: Principles and Concepts 130

9.3 Fabrication Techniques for Junctionless Transistors 134

9.4 Real-World Implementations of Junctionless Transistors 139

9.5 Conclusion 143

9.6 Applications 143

References 143

10 Performance Estimation of Junctionless Tunnel Field-Effect Transistor (JL-TFET): Device Structure and Simulation Through TCAD 145
Pradeep Kumar Kumawat, Shilpi Birla and Neha Singh

10.1 Introduction 145

10.2 Junctionless TFETs 148

10.3 Design Structure of Junctionless TFETs 150

10.4 Conclusion 154

References 154

11 Science and Technology of Tunnel Field-Effect Transistors 157
Zuber Rasool, Nuzhat Yousf, Aadil Anam and S. Intekhab Amin

11.1 Phenomenon of Quantum Tunneling 157

11.2 Tunneling Mathematics 158

11.3 Tunnel Field-Effect Transistors (TFETs) 165

11.4 Conclusion 183

References 183

12 Circuits Designed for Energy-Harvesting Applications That Leverage TFETs to Achieve Extremely Low Power Consumption 189
Basudha Dewan

12.1 Introduction 189

12.2 Energy Harvesting in an Era Beyond Moore's Law 193

12.3 Tunnel Field-Effect Transistors (TFETs) as a Vital Technology for Energy Harvesting 194

12.4 Tunnel FET Technology: State of the Art 196

12.5 Band-to-Band Tunneling (BTBT) Current 196

12.6 MOSFET vs. TFET 197

12.7 Innovations in the Configurations of TFETs 200

12.8 Conclusion 202

References 202

13 A Ferroelectric Negative-Capacitance TFET with Extended Back Gate for Improvement in DC and Analog/HF Parameters 205
Anil Kumar Pathakamuri, Chandan Kumar Pandey, Diganta Das, Umakanta Nanda and Shiromani Balmukund Rahi

13.1 Introduction 206

13.2 Architectural Configuration and Simulation Approach 207

13.3 Results and Discussion 208

13.4 Conclusion 217

References 217

14 Basic Concepts of Heterojunction Tunnel Field-Effect Transistors 221
P. Suveetha Dhanaselvam, B. Karthikeyan, K. Kavitha and P. Kavitha

14.1 Introduction 221

14.2 Boosting TFET ON Current 223

14.3 Heterojunction TFET 225

14.4 Various Heterojunction Structures 226

14.5 Conclusion 232

References 233

15 Boosting Performance of Charge Plasma-Based TFETs 235
Iman Chahardah Cherik, Saeed Mohammadi and Hadiseh Hosseinimanesh

15.1 Introduction 235

15.2 What is Charge Plasma Concept? 236

15.3 Techniques to Enhance the Performance of Dopingless TFETs 238

15.4 Materials Engineering 238

15.5 Enhancement of the Electrostatic Control 243

15.6 Drawbacks of Dopingless TFET 247

15.7 Benchmarking 251

15.8 Summary 252

Future Scope 252

References 253

16 TFET Device Modeling Using ML Algorithms 257
P. Vanitha, Paulvanna Nayaki Marimuthu, N. B. Balamurugan and M. Hemalatha

16.1 Introduction 258

16.2 Role of ML Algorithms in Device Modeling 259

16.3 Simulation of Devices and ML Techniques 261

16.4 Dataset Generation 262

16.5 ml Workflow 263

16.6 Comparison of ML Algorithms 264

References 267

17 Design of Next-Generation Field-Effect Transistors Using Machine Learning 269
K. Girija Sravani, M. Srikanth, Manikanta Sirigineedi and Padma Bellapukonda

17.1 Introduction 269

17.2 Description 270

17.3 Optimizing FET Performance through Machine Learning 271

17.4 Enhancing Predictive Accuracy and Robustness 275

17.5 Integrating ML-Optimized FET Structures with Manufacturing Advances 279

17.6 Conclusion 282

Bibliography 282

18 Machine Learning-Augmented Blockchain-Based Graphene Field-Effect Transistor Sensor Platform for Biomarker Detection 287
Srinivasa Rao Karumuri, M. Srikanth, J.M.S.V. Ravi Kumar and Bhanurangarao M.

18.1 Introduction 287

18.2 Description 288

18.3 Conclusion 306

Bibliography 306

19 Heterojunction Concept and Technology for FET Developments 311
Shashank Kumar Dubey, Soumak Nandi, Kondaveeti Girija Sravani, Sandip Swarnakar, Mukesh Kumar and Aminul Islam

19.1 Introduction 311

19.2 Concept of Heterojunction 313

19.3 Heterojunction Field-Effect Transistors (HFETs): An Advanced FET 315

19.4 GaAs-Based HEMTs 318

19.5 InP-Based HEMTs 319

19.6 GaN-Based HEMTs and its Applications 320

References 327

20 Characteristic Analysis of GOS HTFET 333
B. V. V. Satyanarayana, T. S. S. Phani, A. K. C. Varma, G. Prasanna Kumar, M. V. Ganeswara Rao and Prudhvi Raj Budumuru

20.1 Introduction 333

20.2 Design Considerations of GOS HTFET 335

20.3 Device Physics and Structures of GOS HTFETs 339

20.4 Model of GOS HTFET 343

20.5 Simulation and Validation of GOS HTFET 345

20.6 Characteristics of GOS HTFET 346

20.7 Limitations of GOS HTFET 351

20.8 Application of GOS HTFET in SRAM Design 351

20.9 Conclusions 352

References 353

21 A Charge-Based 2D Mathematical Model for Dual-Material Gate Fe-Doped AlGaN/AlN/GaN High-Electron Mobility Transistors 355
N. B. Balamurugan, M. Hemalatha, M. Suguna and D. Sriram Kumar

21.1 Introduction 356

21.2 Device Structure and Description 356

21.3 Mathematical Formulation 358

21.4 Summary 370

References 370

22 Exploring Vertical Transition Metal Dichalcogenide Heterostructure MOSFET: A Comprehensive Review 373
Malu U., Charles Pravin J. and Sandeep V.

22.1 Introduction 373

22.2 Transition Metal Dichalogenides (TMDs) 375

22.3 Heterostructure Transition Metal Dichalcogenides 378

22.4 Some of the TMD-Related Materials 381

22.5 Other Properties 384

22.6 Conclusion 384

References 384

23 Two-Dimensional Materials and Devices for UV Detection 393
Penchalaiah Palla, Akbar Basha Dhu-al Shaik, David Jenkins and Srinivasa Rao Karumuri

23.1 Part 1: Introduction to 2D Materials and UV Detectors 394

23.2 Part 2: Recent Developments in 2D Material-Based UV Detectors 407

23.3 Summary 412

References 413

24 Negative-Capacitance Field-Effect Transistor for Optimization of Power Factor for Modern Applications 417
Shiromani Balmukund Rahi, Abhishek Kumar Upadhyay, Hanumant Lal and Srinivasa Rao Karumuri

24.1 Introduction 418

24.2 Requirement of Low-Power MOSFET 418

24.3 Challenges in Classical MOS Devices 419

24.4 Negative Capacitance: Low-Power Device 421

24.5 Fundamental of Negative-Capacitance Technology 422

24.6 Negative-Capacitance Transistors 426

24.7 Fundamental Approach for Low-Power Circuit Design 426

24.8 Future Scope 427

24.9 Conclusion 428

References 428

25 Nanoscale High-K Tri-Material Surrounding-Gate MOSFET—An Insight Analysis 433
P. Suveetha Dhanaselvam, S. Vasuki, B. Karthikeyan and D. Sriram Kumar

25.1 Introduction 433

25.2 Proposed Structure 435

25.3 Analytical Model 435

25.4 Conclusion 441

References 441

26 Nanoscale Field-Effect Transistors (FETs) in RF Applications 443
Rajeswari P., Gobinath A., Suresh Kumar N. and Anandan M.

26.1 Introduction 444

26.2 Fundamental Principles and Operating Characteristics of FETs 447

26.3 Scaling Challenges in Nanoscale FETs for RF Applications 450

26.4 Exploring the Landscape: Field-Effect Transistors (FETs) in Radiofrequency (RF) Applications 452

26.5 Conclusion 454

References 455

27 Emerging Subthreshold Swing FET for Next-Generation Technology Nodes 457
G. Lakshmi Priya, T. Ranjith Kumar, G. Gifta, A. Andrew Roobert and M. Venkatesh

27.1 Introduction 458

27.2 Fundamental Challenges with Conventional FET Device 458

27.3 Developed Emerging Subthreshold Swing FET and its Working Principle 465

27.4 Limitations of Emerging Subthreshold Swing FET 470

27.5 Techniques to Overcome the Limitations of Emerging Subthreshold Swing FET 470

27.6 Conclusion 472

References 472

28 Elucidation of the Impact of Nano Heat Transfer Variability on Three-Dimensional Field-Effect Transistors 477
Faouzi Nasri, Husien Salama, Billel Smaani and Khalifa Ahmed Salama

28.1 Introduction 478

28.2 Mathematical Formulation and Structural Analysis 482

28.3 Results and Discussion 485

28.4 Conclusion 490

References 491

About the Editors 493

Index 495

最近チェックした商品