- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
Field Effect Transistors is an essential read for anyone interested in the future of electronics, as it provides a comprehensive yet accessible exploration of innovative semiconductor devices and their applications, making it a perfect resource for both beginners and seasoned professionals in the field.
Miniaturization has become the slogan of the electronics industry. Field Effect Transistors serves as a short encyclopedia for young minds looking for solutions in the miniaturization of semiconductor devices. It explores the characteristics, novel materials used, modifications in device structure, and advancements in model FET devices. Though many devices following Moore's Law have been proposed and designed, a complete history of the existing and proposed semiconductor devices is not available. This book focuses on developments and research in emerging semiconductor FET devices and their applications, providing unique coverage of topics covering recent advancements and novel concepts in the field of miniaturized semiconductor devices. Field Effect Transistors is an easy-to-understand guide, making it excellent for those who are new to the subject, giving insight and analysis of recent developments and developed semiconductor device structures along with their applications.
Contents
Preface xix
1 Classical MOSFET Evolution: Foundations and Advantages 1
S. Amir Ghoreishi and Samira Pahlavani
1.1 Introduction of Classical MOSFET 1
1.2 Dual-Gate MOSFET 3
1.3 Gate-All-Around MOSFET 7
1.4 ID -VG and ID -VG Characteristics of Conventional MOSFETs 8
1.5 Capacitance Characteristics of Conventional MOSFETs 12
1.6 Frequency-Dependent Behavior 15
1.7 Conclusion 18
References 19
2 Marvels of Modern Semiconductor Field-Effect Transistors 23
S. Amir Ghoreishi, Mohsen Mahmoudysepehr and Zeinab Ramezani
2.1 Introduction 23
2.2 Tunnel Field-Effect Transistor 25
2.3 Junctionless Transistors 27
2.4 GAA-FETs the Origin of Nanowire FETs and Nanosheet FETs 31
2.5 Significance in Modern Electronics 32
2.6 Main Electrical Characteristics of GAA-FETs 33
2.7 GAA-FET Classification 35
2.8 Nanowire Field-Effect Transistors (NW-FETs) 36
2.9 Nanosheet Field-Effect Transistors (NS-FETs) 37
2.10 Electrical Characteristics 38
2.11 Conclusion 40
References 42
3 Introduction to Modern FET Technologies 45
A. Babu Karuppiah and R. Rajaraja
3.1 Introduction 45
3.2 FinFETs (Fin Field-Effect Transistors) 46
3.3 Unveiling Multi-Gate MOSFETs: A Symphony of Efficiency 47
3.4 Unveiling Nanoscale MOSFETs: The Miniaturization Marvel 49
3.5 High-Electron Mobility Transistors (HEMTs): A Leap into the Future of FET Technology 50
3.6 Graphene Field-Effect Transistors (GFETs): Pioneering the Future of FET Technology 51
3.7 Tunnel Field-Effect Transistors (TFETs): Navigating the Quantum Realm of Future Electronics 53
3.8 Silicon Carbide (SiC) MOSFETs: Transforming Power Electronics for a Greener Future 54
3.9 Power MOSFETs: Empowering the Future of High-Efficiency Power Electronics 55
3.10 Gallium Nitride (GaN) High-Electron Mobility Transistors (HEMTs): Unleashing the Power of Wide Bandgap Semiconductors 56
3.11 Organic Field-Effect Transistors (OFETs): Bridging the Gap to Flexible and Sustainable Electronics 58
3.12 Conclusion 59
Bibliography 60
4 Scaling of Field-Effect Transistors 63
L. Vinoth Kumar, G. Pradeep Kumar and B. Karthikeyan
4.1 Introduction 63
4.2 Short-Channel Effect 65
4.3 FinFET Overview 67
4.4 GAAFET Overview 69
4.5 Conclusions 71
References 71
5 Future Prospective Beyond CMOS Technology Design 73
P. Suveetha Dhanaselvam, B. Karthikeyan and P. Anand
5.1 Introduction 73
5.2 Spintronics 74
5.3 Carbon Nanotube Transistors 75
5.4 Memristor 77
5.4.1 Working Principle 77
5.5 Applications 78
5.6 Quantum Dots 78
References 79
6 Nanowire Transistors 81
P. Suveetha Dhanaselvam, B. Karthikeyan, S. Nagarajan and B. Padmanaban
6.1 Introduction 81
6.2 Nanowire FETs 83
6.3 Organic Nanowire Transistors 89
6.4 Conclusion 90
References 90
7 Advancement of Nanotechnology and NP-Based Biosensors 93
P. Anand and B. Muneeswari
7.1 Introduction 93
7.2 Metal Oxide-Based Biosensors 95
7.3 Zinc Oxide-Based Biosensor 96
7.4 AuNP-Based Biosensors 98
7.5 GR-Based Biosensors 101
References 102
8 Technology Behind Junctionless Semiconductor Devices 105
Pavani Kollamudi and Srinivasa Rao Karumuri
8.1 Introduction 106
8.2 Operating Modes Based on the Structure of the Device 112
8.3 TCAD Simulations 116
8.4 Effect of Temperature 119
8.5 Results and Discussions 120
8.6 Conclusion 123
References 123
9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor Transistors Reinventing Semiconductor Technology 125
G. Vijayakumari, U. Rajasekaran, R. Praveenkumar, S. D. Vijayakumar and V. Kumar
9.1 Introduction 125
9.2 Junctionless MOS Transistors: Principles and Concepts 130
9.3 Fabrication Techniques for Junctionless Transistors 134
9.4 Real-World Implementations of Junctionless Transistors 139
9.5 Conclusion 143
9.6 Applications 143
References 143
10 Performance Estimation of Junctionless Tunnel Field-Effect Transistor (JL-TFET): Device Structure and Simulation Through TCAD 145
Pradeep Kumar Kumawat, Shilpi Birla and Neha Singh
10.1 Introduction 145
10.2 Junctionless TFETs 148
10.3 Design Structure of Junctionless TFETs 150
10.4 Conclusion 154
References 154
11 Science and Technology of Tunnel Field-Effect Transistors 157
Zuber Rasool, Nuzhat Yousf, Aadil Anam and S. Intekhab Amin
11.1 Phenomenon of Quantum Tunneling 157
11.2 Tunneling Mathematics 158
11.3 Tunnel Field-Effect Transistors (TFETs) 165
11.4 Conclusion 183
References 183
12 Circuits Designed for Energy-Harvesting Applications That Leverage TFETs to Achieve Extremely Low Power Consumption 189
Basudha Dewan
12.1 Introduction 189
12.2 Energy Harvesting in an Era Beyond Moore's Law 193
12.3 Tunnel Field-Effect Transistors (TFETs) as a Vital Technology for Energy Harvesting 194
12.4 Tunnel FET Technology: State of the Art 196
12.5 Band-to-Band Tunneling (BTBT) Current 196
12.6 MOSFET vs. TFET 197
12.7 Innovations in the Configurations of TFETs 200
12.8 Conclusion 202
References 202
13 A Ferroelectric Negative-Capacitance TFET with Extended Back Gate for Improvement in DC and Analog/HF Parameters 205
Anil Kumar Pathakamuri, Chandan Kumar Pandey, Diganta Das, Umakanta Nanda and Shiromani Balmukund Rahi
13.1 Introduction 206
13.2 Architectural Configuration and Simulation Approach 207
13.3 Results and Discussion 208
13.4 Conclusion 217
References 217
14 Basic Concepts of Heterojunction Tunnel Field-Effect Transistors 221
P. Suveetha Dhanaselvam, B. Karthikeyan, K. Kavitha and P. Kavitha
14.1 Introduction 221
14.2 Boosting TFET ON Current 223
14.3 Heterojunction TFET 225
14.4 Various Heterojunction Structures 226
14.5 Conclusion 232
References 233
15 Boosting Performance of Charge Plasma-Based TFETs 235
Iman Chahardah Cherik, Saeed Mohammadi and Hadiseh Hosseinimanesh
15.1 Introduction 235
15.2 What is Charge Plasma Concept? 236
15.3 Techniques to Enhance the Performance of Dopingless TFETs 238
15.4 Materials Engineering 238
15.5 Enhancement of the Electrostatic Control 243
15.6 Drawbacks of Dopingless TFET 247
15.7 Benchmarking 251
15.8 Summary 252
Future Scope 252
References 253
16 TFET Device Modeling Using ML Algorithms 257
P. Vanitha, Paulvanna Nayaki Marimuthu, N. B. Balamurugan and M. Hemalatha
16.1 Introduction 258
16.2 Role of ML Algorithms in Device Modeling 259
16.3 Simulation of Devices and ML Techniques 261
16.4 Dataset Generation 262
16.5 ml Workflow 263
16.6 Comparison of ML Algorithms 264
References 267
17 Design of Next-Generation Field-Effect Transistors Using Machine Learning 269
K. Girija Sravani, M. Srikanth, Manikanta Sirigineedi and Padma Bellapukonda
17.1 Introduction 269
17.2 Description 270
17.3 Optimizing FET Performance through Machine Learning 271
17.4 Enhancing Predictive Accuracy and Robustness 275
17.5 Integrating ML-Optimized FET Structures with Manufacturing Advances 279
17.6 Conclusion 282
Bibliography 282
18 Machine Learning-Augmented Blockchain-Based Graphene Field-Effect Transistor Sensor Platform for Biomarker Detection 287
Srinivasa Rao Karumuri, M. Srikanth, J.M.S.V. Ravi Kumar and Bhanurangarao M.
18.1 Introduction 287
18.2 Description 288
18.3 Conclusion 306
Bibliography 306
19 Heterojunction Concept and Technology for FET Developments 311
Shashank Kumar Dubey, Soumak Nandi, Kondaveeti Girija Sravani, Sandip Swarnakar, Mukesh Kumar and Aminul Islam
19.1 Introduction 311
19.2 Concept of Heterojunction 313
19.3 Heterojunction Field-Effect Transistors (HFETs): An Advanced FET 315
19.4 GaAs-Based HEMTs 318
19.5 InP-Based HEMTs 319
19.6 GaN-Based HEMTs and its Applications 320
References 327
20 Characteristic Analysis of GOS HTFET 333
B. V. V. Satyanarayana, T. S. S. Phani, A. K. C. Varma, G. Prasanna Kumar, M. V. Ganeswara Rao and Prudhvi Raj Budumuru
20.1 Introduction 333
20.2 Design Considerations of GOS HTFET 335
20.3 Device Physics and Structures of GOS HTFETs 339
20.4 Model of GOS HTFET 343
20.5 Simulation and Validation of GOS HTFET 345
20.6 Characteristics of GOS HTFET 346
20.7 Limitations of GOS HTFET 351
20.8 Application of GOS HTFET in SRAM Design 351
20.9 Conclusions 352
References 353
21 A Charge-Based 2D Mathematical Model for Dual-Material Gate Fe-Doped AlGaN/AlN/GaN High-Electron Mobility Transistors 355
N. B. Balamurugan, M. Hemalatha, M. Suguna and D. Sriram Kumar
21.1 Introduction 356
21.2 Device Structure and Description 356
21.3 Mathematical Formulation 358
21.4 Summary 370
References 370
22 Exploring Vertical Transition Metal Dichalcogenide Heterostructure MOSFET: A Comprehensive Review 373
Malu U., Charles Pravin J. and Sandeep V.
22.1 Introduction 373
22.2 Transition Metal Dichalogenides (TMDs) 375
22.3 Heterostructure Transition Metal Dichalcogenides 378
22.4 Some of the TMD-Related Materials 381
22.5 Other Properties 384
22.6 Conclusion 384
References 384
23 Two-Dimensional Materials and Devices for UV Detection 393
Penchalaiah Palla, Akbar Basha Dhu-al Shaik, David Jenkins and Srinivasa Rao Karumuri
23.1 Part 1: Introduction to 2D Materials and UV Detectors 394
23.2 Part 2: Recent Developments in 2D Material-Based UV Detectors 407
23.3 Summary 412
References 413
24 Negative-Capacitance Field-Effect Transistor for Optimization of Power Factor for Modern Applications 417
Shiromani Balmukund Rahi, Abhishek Kumar Upadhyay, Hanumant Lal and Srinivasa Rao Karumuri
24.1 Introduction 418
24.2 Requirement of Low-Power MOSFET 418
24.3 Challenges in Classical MOS Devices 419
24.4 Negative Capacitance: Low-Power Device 421
24.5 Fundamental of Negative-Capacitance Technology 422
24.6 Negative-Capacitance Transistors 426
24.7 Fundamental Approach for Low-Power Circuit Design 426
24.8 Future Scope 427
24.9 Conclusion 428
References 428
25 Nanoscale High-K Tri-Material Surrounding-Gate MOSFET—An Insight Analysis 433
P. Suveetha Dhanaselvam, S. Vasuki, B. Karthikeyan and D. Sriram Kumar
25.1 Introduction 433
25.2 Proposed Structure 435
25.3 Analytical Model 435
25.4 Conclusion 441
References 441
26 Nanoscale Field-Effect Transistors (FETs) in RF Applications 443
Rajeswari P., Gobinath A., Suresh Kumar N. and Anandan M.
26.1 Introduction 444
26.2 Fundamental Principles and Operating Characteristics of FETs 447
26.3 Scaling Challenges in Nanoscale FETs for RF Applications 450
26.4 Exploring the Landscape: Field-Effect Transistors (FETs) in Radiofrequency (RF) Applications 452
26.5 Conclusion 454
References 455
27 Emerging Subthreshold Swing FET for Next-Generation Technology Nodes 457
G. Lakshmi Priya, T. Ranjith Kumar, G. Gifta, A. Andrew Roobert and M. Venkatesh
27.1 Introduction 458
27.2 Fundamental Challenges with Conventional FET Device 458
27.3 Developed Emerging Subthreshold Swing FET and its Working Principle 465
27.4 Limitations of Emerging Subthreshold Swing FET 470
27.5 Techniques to Overcome the Limitations of Emerging Subthreshold Swing FET 470
27.6 Conclusion 472
References 472
28 Elucidation of the Impact of Nano Heat Transfer Variability on Three-Dimensional Field-Effect Transistors 477
Faouzi Nasri, Husien Salama, Billel Smaani and Khalifa Ahmed Salama
28.1 Introduction 478
28.2 Mathematical Formulation and Structural Analysis 482
28.3 Results and Discussion 485
28.4 Conclusion 490
References 491
About the Editors 493
Index 495