Deep Learning for Biomedical Image Reconstruction

個数:

Deep Learning for Biomedical Image Reconstruction

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 400 p.
  • 言語 ENG
  • 商品コード 9781316517512
  • DDC分類 616.0754

Full Description

Discover the power of deep neural networks for image reconstruction with this state-of-the-art review of modern theories and applications. The background theory of deep learning is introduced step-by-step, and by incorporating modeling fundamentals this book explains how to implement deep learning in a variety of modalities, including X-ray, CT, MRI and others. Real-world examples demonstrate an interdisciplinary approach to medical image reconstruction processes, featuring numerous imaging applications. Recent clinical studies and innovative research activity in generative models and mathematical theory will inspire the reader towards new frontiers. This book is ideal for graduate students in Electrical or Biomedical Engineering or Medical Physics.

Contents

Part I. Theory of Deep Learning for Image Reconstruction Michael Unser: 1. Formalizing deep neural networks Jong Chul Ye and Sangmin Lee; 2. Geometry of deep learning Saiprasad Ravishankar, Zhishen Huang, Michael McCann and Siqi Ye; 3. Model-based reconstruction with learning: from unsupervised to supervised and beyond Yuelong Li, Or Bar-Shira, Vishal Monga and Yonina C. Eldar; 4. Deep algorithm unrolling for biomedical; Part II. Deep Learning Architecture for Various Imaging Modalities Haimiao Zhang, Bin Dong, Ge Wang and Baodong Liu: 5. Deep learning for CT image reconstruction Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han and Jong Chul Ye; 6. Deep learning in CT reconstruction: bring the measured data to tasks Patricia Johnson and Florian Knoll; 7. Overview deep learning reconstruction of accelerated MRI Mathews Jacob, Hemant K. Aggarwal and Qing Zou; 8. Model-based deep learning algorithms for inverse problems Mehmet Akcakaya, Gyutaek Oh, Jong Chul Ye; 9. k-space deep learning for MR reconstruction and artifact removal Ruud J. G. van Sloun, Jong Chul Ye and Yonina C Eldar; 10. Deep learning for ultrasound beamforming Jaeyoung Huh, Shujaat Khan and Jong Chul Ye; 11. Ultrasound image artifact removal using deep neural network; Part III. Generative Models for Biomedical Imaging Jaejun Yoo, Michael Unser: 12. Deep generative models for biomedical image reconstruction Tolga C¸ukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin Chun and, Jong Chul Ye; 13. Image synthesis in multi-contrast MRI with generative adversarial networks Jaejun Yoo and Michael Unser; 14. Regularizing deep-neural-network paradigm for the reconstruction of dynamic magnetic resonance images Thanh-an Pham, Fangshu Yang and Michael Unser; 15. Regularizing neural network for phase unwrapping Michael T. McCann, Laur`ene Donati, Harshit Gupta and Michael Unser; 16. CryoGAN: a deep generative adversarial approach to single-particle cryo-em; Index.

最近チェックした商品