Algorithm Design : Pearson New International Edition

個数:

Algorithm Design : Pearson New International Edition

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 828 p.
  • 言語 ENG
  • 商品コード 9781292023946
  • DDC分類 005.1

Full Description

Algorithm Design introduces algorithms by looking at the real-world problems that motivate them. The book teaches students a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science.

Contents

Algorithm Design
Jon Kleinberg and Eva Tardos

Table of Contents

1 Introduction: Some Representative Problems  

 1.1 A First Problem: Stable Matching  

 1.2 Five Representative Problems  
 Solved Exercises
Excercises
Notes and Further Reading

 

 

2 Basics of Algorithms Analysis  

 2.1 Computational Tractability  

 2.2 Asymptotic Order of Growth Notation  

 2.3 Implementing the Stable Matching Algorithm using Lists and Arrays

 2.4 A Survey of Common Running Times  

 2.5 A More Complex Data Structure: Priority Queues

 Solved Exercises  
 Exercises  
 Notes and Further Reading

 

 

3 Graphs  

 3.1 Basic Definitions and Applications  

 3.2 Graph Connectivity and Graph Traversal  
 3.3 Implementing Graph Traversal using Queues and Stacks
 3.4 Testing Bipartiteness: An Application of Breadth-First Search  
 3.5 Connectivity in Directed Graphs  
 3.6 Directed Acyclic Graphs and Topological Ordering  
 Solved Exercises  
Exercises  
 Notes and Further Reading


 

 4 Divide and Conquer  
 4.1 A First Recurrence: The Mergesort Algorithm
 4.2 Further Recurrence Relations
 4.3 Counting Inversions
 4.4 Finding the Closest Pair of Points
 4.5 Integer Multiplication
 4.6 Convolutions and The Fast Fourier Transform
 Solved Exercises
 Exercises
 Notes and Further Reading

 

5 Greedy Algorithms  
 5.1 Interval Scheduling: The Greedy Algorithm Stays Ahead  
 5.2 Scheduling to Minimize Lateness: An Exchange Argument
 5.3 Optimal Caching: A More Complex Exchange Argument
 5.4 Shortest Paths in a Graph  
 5.5 The Minimum Spanning Tree Problem  
 5.6 Implementing Kruskal's Algorithm: The Union-Find Data Structure
 5.7 Clustering  
 5.8 Huffman Codes and the Problem of Data Compression
*5.9 Minimum-Cost Arborescences: A Multi-Phase Greedy Algorithm  
 Solved Exercises
 Excercises
 Notes and Further Reading

 

6 Dynamic Programming  
 6.1 Weighted Interval Scheduling: A Recursive Procedure  
6.2 Weighted Interval Scheduling: Iterating over Sub-Problems  
 6.3 Segmented Least Squares: Multi-way Choices  
 6.4 Subset Sums and Knapsacks: Adding a Variable  
 6.5 RNA Secondary Structure: Dynamic Programming Over Intervals  
 6.6 Sequence Alignment  
 6.7 Sequence Alignment in Linear Space
 6.8 Shortest Paths in a Graph  
 6.9 Shortest Paths and Distance Vector Protocols  
*6.10 Negative Cycles in a Graph  

Solved Exercises
Exercises
Notes and Further Reading

 

 

7 Network Flow  
 7.1 The Maximum Flow Problem and the Ford-Fulkerson Algorithm
 7.2 Maximum Flows and Minimum Cuts in a Network  
 7.3 Choosing Good Augmenting Paths  
*7.4 The Preflow-Push Maximum Flow Algorithm  
 7.5 A First Application: The Bipartite Matching Problem
 7.6 Disjoint Paths in Directed and Undirected Graphs
 7.7 Extensions to the Maximum Flow Problem  
 7.8 Survey Design  
 7.9 Airline Scheduling  
 7.10 Image Segmentation&nbs

最近チェックした商品