Piece-wise and Max-Type Difference Equations : Periodic and Eventually Periodic Solutions

個数:

Piece-wise and Max-Type Difference Equations : Periodic and Eventually Periodic Solutions

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 172 p.
  • 言語 ENG
  • 商品コード 9781138313507
  • DDC分類 515.625

Full Description

Piece-wise and Max-Type Difference Equations: Periodic and Eventually Periodic Solutions is intended for lower-level undergraduate students studying discrete mathematics.

The book focuses on sequences as recursive relations and then transitions to periodic recursive patterns and eventually periodic recursive patterns. In addition to this, it will also focus on determining the patterns of periodic and eventually periodic solutions inductively. The aim of the author, throughout this book, is to get students to understand the significance of pattern recognition as a mathematical tool.

Key Features




Can provide possible topics for undergraduate research and for bachelor's thesis



Provides supplementary practice problems and some open-ended research problems at the end of each chapter



Focusses on determining the patterns of periodic and eventually periodic solutions inductively



Enhances students' algebra skills before moving forward to upper level courses



Familiarize students with the topics before they start undergraduate research by providing applications.

Contents

Contents

Preface vii

Acknowledgments ix

Author xi




Introduction 1
1.1 Recursive Sequences . . . . . . . . . . . . . . . . . . . . . . . 3






Order and Explicit Solution of a ∆.E. . . . . . . . . . . . . . 5



Non-Autonomous Difference Equations . . . . . . . . . . . . 6



1.4 Periodic Sequences . . . . . . . . . . . . . . . . . . . . . . . . 7




Alternating Periodic Cycles . . . . . . . . . . . . . . . . . . . 12



Specific Patterns of Periodic Cycles . . . . . . . . . . . . . . 13



Eventually Periodic Sequences . . . . . . . . . . . . . . . . . 14



1.8 Piece-wise Sequences . . . . . . . . . . . . . . . . . . . . . . 18

1.9 Chapter 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 20




Linear Difference Equations 25




Autonomous Linear Difference Equations . . . . . . . . . . . 26



2.2 Non-Autonomous Linear ∆.E.'s . . . . . . . . . . . . . . . . 27

2.2.1 Multiplicative Form of Eq. (2.5) . . . . . . . . . . . . . 27

2.2.2 Additive Form of Eq. (2.5) . . . . . . . . . . . . . . . . 31

2.3 Chapter 2 Exercises . . . . . . . . . . . . . . . . . . . . . . . 40




Riccati Difference Equations 43
3.1 First-Order Riccati ∆.E. . . . . . . . . . . . . . . . . . . . . 43

3.2 Second-Order Riccati ∆.E. . . . . . . . . . . . . . . . . . . . 50

3.3 Chapter 3 Exercises . . . . . . . . . . . . . . . . . . . . . . . 60




Piece-wise Difference Equations 63
4.1 The Collatz Conjectures . . . . . . . . . . . . . . . . . . . . 64

4.2 The Tent-Map . . . . . . . . . . . . . . . . . . . . . . . . . . 65






The Autonomous Neuron Model . . . . . . . . . . . . . . . . 72




Autonomous Neuron Model when β = 1 . . . . . . . . 79




Non-Autonomous Neuron Model . . . . . . . . . . . . . . . . 82




Non-Autonomous Neuron Model when β0β1 = 1 . . . 88





4.5 The Williamson Model . . . . . . . . . . . . . . . . . . . . . 92

4.6 The West Nile Epidemics Model . . . . . . . . . . . . . . . . 93

4.7 Chapter 4 Exercises . . . . . . . . . . . . . . . . . . . . . . . 93

5 Max-Type Difference Equations 97

5.1 The Autonomous Case (Eq. [5.1]) . . . . . . . . . . . . . . . 97




Eventually Periodic with Period-2 . . . . . . . . . . . 100



Eventually Periodic with Period-4 . . . . . . . . . . . 109



Eventually Periodic with Period-3 . . . . . . . . . . . 117



Eventually Constant with K = 1 . . . . . . . . . . . . 125





5.2 The Non-Autonomous Case (Eq. [5.2]) . . . . . . . . . . . . . 130




Eventually Periodic with Period-2 . . . . . . . . . . . 132



Eventually Periodic with Period-4 . . . . . . . . . . . 140



Eventually Periodic with Period-6 . . . . . . . . . . . 144





5.3 Chapter 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 147

6 Appendices 149

6.1 Patterns of Sequences . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Alternating Patterns of Sequences . . . . . . . . . . . . . . . 149

6.3 Finite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 150




Convergent Infinite Series . . . . . . . . . . . . . . . . . . . . 150



Periodicity and Modulo Arithmetic . . . . . . . . . . . . . . 151




Alternating Periodicity . . . . . . . . . . . . . . . . . . 151




Patterns as an Initial Value Problem . . . . . . . . . . . . . 152



Specific Periodic Patterns . . . . . . . . . . . . . . . . . . . . 153



Bibliography 155

Index 157

最近チェックした商品