Intelligent Data Mining and Analysis in Power and Energy Systems : Models and Applications for Smarter Efficient Power Systems (Ieee Press Series on Power and Energy Systems)

個数:
電子版価格
¥19,973
  • 電子版あり

Intelligent Data Mining and Analysis in Power and Energy Systems : Models and Applications for Smarter Efficient Power Systems (Ieee Press Series on Power and Energy Systems)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 448 p.
  • 言語 ENG
  • 商品コード 9781119834021
  • DDC分類 006.312

Full Description

Intelligent Data Mining and Analysis in Power and Energy Systems A hands-on and current review of data mining and analysis and their applications to power and energy systems

In Intelligent Data Mining and Analysis in Power and Energy Systems: Models and Applications for Smarter Efficient Power Systems, the editors assemble a team of distinguished engineers to deliver a practical and incisive review of cutting-edge information on data mining and intelligent data analysis models as they relate to power and energy systems. You'll find accessible descriptions of state-of-the-art advances in intelligent data mining and analysis and see how they drive innovation and evolution in the development of new technologies.

The book combines perspectives from authors distributed around the world with expertise gained in academia and industry. It facilitates review work and identification of critical points in the research and offers insightful commentary on likely future developments in the field. It also provides:

A thorough introduction to data mining and analysis, including the foundations of data preparation and a review of various analysis models and methods
In-depth explorations of clustering, classification, and forecasting
Intensive discussions of machine learning applications in power and energy systems

Perfect for power and energy systems designers, planners, operators, and consultants, Intelligent Data Mining and Analysis in Power and Energy Systems will also earn a place in the libraries of software developers, researchers, and students with an interest in data mining and analysis problems.

Contents

About the Editors

Notes on Contributors

Preface

PART I. Data Mining and Analysis Fundamentals

1. Foundations

Ansel Y. Rodríguez González, Angel Díaz Pacheco, Ramón Aranda, and Miguel Angel Carmona

2. Data mining and analysis in power and energy systems: an introduction to algorithms and applications

Fernando Lezama

 

3. Deep Learning in Intelligent Power and Energy Systems

Bruno Mota, Tiago Pinto, Zita Vale, and Carlos Ramos

 

PART II. Clustering

4. Data Mining Techniques applied to Power Systems

Sérgio Ramos, João Soares, Zahra Forouzandeh, and Zita Vale

 

5. Synchrophasor Data Analytics for Anomaly and Event Detection, Classification and Localization

Sajan K. Sadanandan, A. Ahmed, S. Pandey, and Anurag K. Srivastava

 

6. Clustering Methods for the Profiling of Electricity Consumers Owning Energy Storage System

Cátia Silva, Pedro Faria, Zita Vale, and Juan Manuel Corchado

 

PART III. Classification

7. A Novel Framework for NTL Detection in Electric Distribution Systems

Chia-Chi Chu, Nelson Fabian Avila, Gerardo Figueroa, and Wen-Kai Lu

 

8. Electricity market participation profiles classification for decision support in market negotiation

Tiago Pinto and Zita Vale

 

9. Socio-demographic, economic and behavioural analysis of electric vehicles

Rúben Barreto, Tiago Pinto, and Zita Vale

 

PART IV. Forecasting

10. A Multivariate Stochastic Spatio-Temporal Wind Power Scenario Forecasting Model

Wenlei Bai, Duehee Lee, and Kwang Y. Lee

 

11. Spatio-Temporal Solar Irradiance and Temperature Data Predictive Estimation

Chirath Pathiravasam and Ganesh K. Venayagamoorthy

 

12. Application of decomposition-based hybrid wind power forecasting in isolated power systems with high renewable energy penetration

Evgenii Semshikov, Michael Negnevitsky, James Hamilton, and Xiaolin Wang

 

PART V. Data analysis

13. Harmonic Dynamic Response Study of Overhead Transmission Lines

Dharmbir Prasad, Rudra Pratap Singh, Md. Irfan Khan, and Sushri Mukherjee

 

14. Evaluation of Shortest Path to Optimize Distribution Network Cost and Power Losses in Hilly Areas: A Case Study

Subho Upadhyay, Rajeev Kumar Chauhan, and Mahendra Pal Sharma

 

15. Intelligent Approaches to Support Demand Response in Microgrid Planning

Rahmat Khezri, Amin Mahmoudi, and Hirohisa Aki

 

16. Socio-Economic Analysis of Renewable Energy Interventions: Developing Affordable Small-Scale Household Sustainable Technologies in Northern Uganda

Jens Bo Holm-Nielsen, Achora Proscovia O Mamur, and Samson Masebinu

 

PART VI. Other machine learning applications

17. A Parallel Bidirectional Long Short-Term Memory Model for Non-Intrusive Load Monitoring

Victor Andrean and Kuo-Lung Lian

 

18. Reinforcement Learning for Intelligent Building Energy Management System Control

Olivera Kotevska and Philipp Andelfinger

 

19. Federated Deep Learning Technique for Power and Energy Systems Data Analysis

Hamed Moayyed, Arash Moradzadeh, Behnam Mohammadi-Ivatloo, and Reza Ghorbani

 

20. Data Mining and Machine Learning for Power System Monitoring, Understanding, and Impact Evaluation

Xinda Ke, Huiying Ren, Qiuhua Huang, Pavel Etingov and Zhangshuan Hou

 

Conclusions

Zita Vale, Tiago Pinto, Michael Negnevitsky, and Ganesh Kumar Venayagamoorthy

最近チェックした商品