実解析学:構成的アプローチ<br>Real Analysis : A Constructive Approach (Pure and Applied Mathematics: a Wiley Series of Texts, Monographs and Tracts)

個数:

実解析学:構成的アプローチ
Real Analysis : A Constructive Approach (Pure and Applied Mathematics: a Wiley Series of Texts, Monographs and Tracts)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 302 p.
  • 言語 ENG
  • 商品コード 9781118357064
  • DDC分類 515

Full Description


A unique approach to analysis that lets you apply mathematics across a range of subjects This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense not just to math majors but also to students from all branches of the sciences. The text begins with a construction of the real numbers beginning with the rationals, using interval arithmetic.This introduces readers to the reasoning and proof-writing skills necessary for doing and communicating mathematics, and it sets the foundation for the rest of the text, which includes: * Early use of the Completeness Theorem to prove a helpful Inverse Function Theorem * Sequences, limits and series, and the careful derivation of formulas and estimates for important functions * Emphasis on uniform continuity and its consequences, such as boundedness and the extension of uniformly continuous functions from dense subsets * Construction of the Riemann integral for functions uniformly continuous on an interval, and its extension to improper integrals * Differentiation, emphasizing the derivative as a function rather than a pointwise limit * Properties of sequences and series of continuous and differentiable functions * Fourier series and an introduction to more advanced ideas in functional analysis Examples throughout the text demonstrate the application of new concepts. Readers can test their own skills with problems and projects ranging in difficulty from basic to challenging.This book is designed mainly for an undergraduate course, and the author understands that many readers will not go on to more advanced pure mathematics. He therefore emphasizes an approach to mathematical analysis that can be applied across a range of subjects in engineering and the sciences.

Contents

Preface Acknowledgements Introduction 0 Preliminaries 0.1 The Natural Numbers 0.2 The Rationals 1 The Real Numbers and Completeness 1.0 Introduction 1.2 Interval Arithmetic 1.3Fine Families 1.4Definition of the Reals 1.5 Real Number Arithmetic 1.6 Rational Approximations 1.7 Real Intervals and Completeness 1.8 Limits and Limiting Families Appendix: The Goldbach Number and Trichotomy 2 An Inverse Function Theorem and its Application 2.0 Introduction 2.1 Functions and Inverses 2.2 An Inverse Function Theorem 2.3 The Exponential Function 2.4 Natural Logs and the Euler Number 3 3 Limits, Sequences and Series 3.1 Sequences and Convergence 3.2 Limits of Functions 3.3 Series of Numbers Appendix I: Some Properties of Exp and Log Appendix II: Rearrangements of Series 4 Uniform Continuity 4.1 Definitions and elementary Properties 4.2 Limits and Extensions Appendix I: Are there Non-Continuous Functions? Appendix II: Continuity of Double-Sided Inverses Appendix III: The Goldbach Function 5 The Riemann Integral 5.1 Definition and Existence 5.2 Elementary Properties 5.3 Extensions and Improper Integrals 6 Differentiation 6.1 Definitions and Basic Properties 6.2 The Arithmetic of Differentiability 6.3 Two Important Theorems 6.4 Derivative Tools 6.5 Integral Tools 7 Sequences and Series of Functions 7.1 Sequences and Functions 7.2 Integrals and Derivatives o Sequences 7.3 Power Series 7.4 Taylor Series 7.5 The Periodic Functions Appendix : Binomial Issues 8 The Complex Numbers and Fourier Series 8.0 Introduction 8.1 The Complex Numbers C 8.2 Complex Functions and Vectors 8.3 Fourier Series Theory References Index

最近チェックした商品