Computational Intelligence : Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing

個数:
電子版価格
¥19,206
  • 電子版あり

Computational Intelligence : Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 512 p.
  • 言語 ENG
  • 商品コード 9781118337844
  • DDC分類 006.3

基本説明

Presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence.

Full Description

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples.

Key features:



Covers all the aspects of fuzzy, neural and evolutionary approaches with worked out examples, MATLAB® exercises and applications in each chapter
Presents the synergies of technologies of computational intelligence such as evolutionary fuzzy neural fuzzy and evolutionary neural systems
Considers real world problems in the domain of systems modelling, control and optimization
Contains a foreword written by Lotfi Zadeh

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing is an ideal text for final year undergraduate, postgraduate and research students in electrical, control, computer, industrial and manufacturing engineering.

Contents

Foreword xiii

Preface xv

Acknowledgements xix

1 Introduction to Computational Intelligence 1

1.1 Computational Intelligence 1

1.2 Paradigms of Computational Intelligence 2

1.3 Approaches to Computational Intelligence 3

1.4 Synergies of Computational Intelligence Techniques 11

1.5 Applications of Computational Intelligence 12

1.6 Grand Challenges of Computational Intelligence 13

1.7 Overview of the Book 13

1.8 MATLAB R _ Basics 14

References 15

2 Introduction to Fuzzy Logic 19

2.1 Introduction 19

2.2 Fuzzy Logic 20

2.3 Fuzzy Sets 21

2.4 Membership Functions 22

2.5 Features of MFs 27

2.6 Operations on Fuzzy Sets 29

2.7 Linguistic Variables 33

2.8 Linguistic Hedges 35

2.9 Fuzzy Relations 37

2.10 Fuzzy If-Then Rules 39

2.11 Fuzzification 43

2.12 Defuzzification 44

2.13 Inference Mechanism 48

2.14 Worked Examples 54

2.15 MATLAB R _ Programs 61

References 61

3 Fuzzy Systems and Applications 65

3.1 Introduction 65

3.2 Fuzzy System 66

3.3 Fuzzy Modelling 67

3.4 Fuzzy Control 75

3.5 Design of Fuzzy Controller 81

3.6 Modular Fuzzy Controller 97

3.7 MATLAB R _ Programs 99

References 100

4 Neural Networks 103

4.1 Introduction 103

4.2 Artificial Neuron Model 106

4.3 Activation Functions 107

4.4 Network Architecture 108

4.5 Learning in Neural Networks 124

4.6 Recurrent Neural Networks 149

4.7 MATLAB R _ Programs 155

References 156

5 Neural Systems and Applications 159

5.1 Introduction 159

5.2 System Identification and Control 160

5.3 Neural Networks for Control 163

5.4 MATLAB R _ Programs 179

References 180

6 Evolutionary Computing 183

6.1 Introduction 183

6.2 Evolutionary Computing 183

6.3 Terminologies of Evolutionary Computing 185

6.4 Genetic Operators 194

6.5 Performance Measures of EA 208

6.6 Evolutionary Algorithms 209

6.7 MATLAB R _ Programs 234

References 235

7 Evolutionary Systems 239

7.1 Introduction 239

7.2 Multi-objective Optimization 243

7.3 Co-evolution 250

7.4 Parallel Evolutionary Algorithm 256

References 262

8 Evolutionary Fuzzy Systems 265

8.1 Introduction 265

8.2 Evolutionary Adaptive Fuzzy Systems 267

8.3 Objective Functions and Evaluation 287

8.4 Fuzzy Adaptive Evolutionary Algorithms 290

References 303

9 Evolutionary Neural Networks 307

9.1 Introduction 307

9.2 Supportive Combinations 309

9.3 Collaborative Combinations 318

9.4 Amalgamated Combination 343

9.5 Competing Conventions 345

References 351

10 Neural Fuzzy Systems 357

10.1 Introduction 357

10.2 Combination of Neural and Fuzzy Systems 359

10.3 Cooperative Neuro-Fuzzy Systems 360

10.4 Concurrent Neuro-Fuzzy Systems 369

10.5 Hybrid Neuro-Fuzzy Systems 369

10.6 Adaptive Neuro-Fuzzy System 404

10.7 Fuzzy Neurons 409

10.8 MATLAB R _ Programs 411

References 412

Appendix A: MATLAB R _ Basics 415

Appendix B: MATLAB R _ Programs for Fuzzy Logic 433

Appendix C: MATLAB R _ Programs for Fuzzy Systems 443

Appendix D: MATLAB R _ Programs for Neural Systems 461

Appendix E: MATLAB R _ Programs for Neural Control Design 473

Appendix F: MATLAB R _ Programs for Evolutionary Algorithms 489

Appendix G: MATLAB R _ Programs for Neuro-Fuzzy Systems 497

Index 507

最近チェックした商品